Advertisements
Advertisements
Question
Find the 6th term form the end of the AP 17, 14, 11, ……, (-40).
Solution
Here, a = 7 and d = (14-17) = -3, l = (-40) and n = 6
Now, nth term from the end =[l-(n-1)d]
6th term from the end = [(-40)-(6-1) × (-3)]
= [ -40 + (5× 3)]=(-40+15)/-25
Hence, the 6th term from the end is –25.
APPEARS IN
RELATED QUESTIONS
If the term of m terms of an A.P. is the same as the sum of its n terms, show that the sum of its (m + n) terms is zero
An A.P. consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 29th term of the A.P.
Find the sum of first n terms of an AP whose nth term is (5 - 6n). Hence, find the sum of its first 20 terms.
The fourth term of an A.P. is 11. The sum of the fifth and seventh terms of the A.P. is 34. Find its common difference.
Draw a triangle PQR in which QR = 6 cm, PQ = 5 cm and times the corresponding sides of ΔPQR?
Sum of 1 to n natural numbers is 36, then find the value of n.
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − kSn−1 + Sn−2, then k =
If 18, a, b, −3 are in A.P., the a + b =
Find the sum of first 1000 positive integers.
Activity :- Let 1 + 2 + 3 + ........ + 1000
Using formula for the sum of first n terms of an A.P.,
Sn = `square`
S1000 = `square/2 (1 + 1000)`
= 500 × 1001
= `square`
Therefore, Sum of the first 1000 positive integer is `square`
The sum of 40 terms of the A.P. 7 + 10 + 13 + 16 + .......... is ______.