Advertisements
Advertisements
Question
Find all values of `(1 + i)^(1/3` and show that their continued product is (1+ ๐ ).
Sum
Solution
Let Z =`(1 + i)^(1/3`
`Z= [sqrt2(cos pi/4+isin pi/4)]^(1/3)`
`Z = (sqrt2)^(1/3).[cos(2kpi+pi/4)+isin(2kpi+pi/4)]^(1/3`
`Z=2^(1/6)[cos(2kpi+pi/4)+isin(2kpi+pi/4)]^(1/3)`
Putting k = 0, 1, 2.
`Z_0=2^(1/6).e^((ipi)/12)`
`Z_1=2^(1/6).e^((9ipi)/12)`
`Z_2=2^(1/6).e^((17pi)/12)`
`therefore Z_0 Z_1 Z_2=2^(3/6).e^((27pi)/12)`
`=2^(1/6).e^((9ipi)/4)`
`=sqrt2(cos (9pi)/4+isin (9pi)/4)`
`=sqrt2(1/sqrt2+i1/sqrt2)`
= (1 + i).
shaalaa.com
Powers and Roots of Trigonometric Functions
Is there an error in this question or solution?