English

Find All Zeros of the Polynomial F(X) = 2x4 − 2x3 − 7x2 + 3x + 6, If Its Two Zeros Are `-sqrt(3/2)` and `Sqrt(3/2)` - Mathematics

Advertisements
Advertisements

Question

Find all zeros of the polynomial f(x) = 2x4 − 2x3 − 7x2 + 3x + 6, if its two zeros are `-sqrt(3/2)` and `sqrt(3/2)`

Solution

Since `-sqrt(3/2)` and `sqrt(3/2)` are two zeros of f(x) Therefore,

`=(x-sqrt(3/2))(x+sqrt(3/2))`

`=(x^2-3/2)`

`=1/2(2x^2-3)` is a factor of f(x).

Also 2x2 - 3 is a factor of f(x).

Let us now divide f(x) by 2x2 - 3. we have

By using that division algorithm we have,

f(x) = g(x) x q(x) + r(x)

2x4 − 2x3 − 7x2 + 3x + 6 = (2x2 - 3)(x2 - x - 2) + 0

2x4 − 2x3 − 7x2 + 3x + 6 `=(sqrt2x+sqrt3)(sqrt2x-sqrt3)(x^2+1x-2x-2)`

2x4 − 2x3 − 7x2 + 3x + 6 `=(sqrt2x+sqrt3)(sqrt2x-sqrt3)[x(x+1)-2(x+1)]`

2x4 − 2x3 − 7x2 + 3x + 6 `=(sqrt2x+sqrt3)(sqrt2x-sqrt3)(x-2)(x+1)`

Hence, The zeros of f(x) are `-sqrt(3/2)`, `sqrt(3/2)`, 2 , -1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.3 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 2 Polynomials
Exercise 2.3 | Q 6 | Page 57

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×