Advertisements
Advertisements
Question
Find `sin x/2, cos x/2 and tan x/2` of the following:
`cos x = -1/3`, x in quadrant III
Solution
Here, x is in quadrant III
i.e, `pi < x < (3x)/2`
⇒ `pi/2 < x/2 < (3pi)/4`
Therefore, cos `x/2` and tan `x/2` are negative, while sin `x/2` is positive.
It is given that cos x = - `1/3`
`cos x = 1 - 2 sin^2 x/2`
⇒ `sin^2 x/2 = (1 - cosx)/2`
⇒ `sin^2 x/2 = (1 - (1/3)/2 = 1 + 1/3)/2 = (4/3)/2 = 2/3`
⇒ sin `x/2 = sqrt2/sqrt3` `[∵ sin x/2 "is positive"]`
∴ sin `x/2 = sqrt2/sqrt3 xx sqrt3/sqrt3 = sqrt6/3`
Now, cos x = `2cos^2 x/2 -1 `
⇒ `cos^2 x/2 = 1 +cosx/2 = 1+ (- 1/3)/2 = ((3-1) /3)/2 = (2/3)/2 = 1/3`
⇒ `cos x/2 = - 1/sqrt3` `[∵ cos x/2 "is negative"]`
∴ `cos x/2 = - 1/sqrt3 xx sqrt3/sqrt3 = (sqrt -3)/3`
`tan x/2 = (sin x/2 = (sqrt2/sqrt3))/(cos x/2 (-1/sqrt3)) = - sqrt2`
Thus, the corresponding values of `sin x/2, cos x/2 and tan x/2 and sqrt6/3, (-sqrt3)/3 and -sqrt2`.