Advertisements
Advertisements
Question
If 2 sin2θ + 3 sin θ = 0, find the permissible values of cos θ.
Solution 1
2 sin2θ + 3 sinθ = 0
∴ sin θ (2 sin θ + 3) = 0
∴ sin θ = 0 or 2 sin θ + 3 = 0
∴ sin θ = 0 or sin θ = `- 3/2`
Since – 1 ≤ sin θ ≤ 1, for all θ ∈ R.
∴ sin θ ≠ `- 3/2`
∴ sin θ = 0
∴ θ = nπ, n ∈ Z.
∴ `sqrt(1 - cos^2θ) = 0 ...[(sin^2θ = 1 – cos^2θ),(∵ sin θ = sqrt(1 - cos^2θ))]`
∴ 1 – cos2θ = 0
∴ cos2θ = 1
∴ cos θ = ± 1 ...[∵ – 1 ≤ cosθ ≤ 1]
Solution 2
We know that sin2θ = 1 − cos2θ
∵ `sin θ = sqrt(1 - cos^2θ)`
Given equation 2 sin2θ + 3 sin θ = 0 becomes
`2(1 − cos^2θ) + 3 (sqrt(1 - cos^2θ)) = 0`
∴ 2(1 − cos2θ) + 3 (1 - cos2θ) = 0
∴ 5(1 − cos2θ) = 0
∴ 1 − cos2θ = 0
∴ cos2θ = 1
∴ cos θ = ± 1 ...[∵ – 1 ≤ cosθ ≤ 1]
∴ The permissible value of cos θ is ± 1.
APPEARS IN
RELATED QUESTIONS
Find `sin x/2, cos x/2 and tan x/2` of the following
`tan x = -4/3`, x in quadrant II
Find `sin x/2, cos x/2 and tan x/2` of the following:
`cos x = -1/3`, x in quadrant III
Find `sin x/2, cos x/2 and tan x/2` of the following:
`sin x = 1/4`, x in quadrant II
Which of the following is not correct?