Advertisements
Advertisements
Question
Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[4 \hat{i} + 8 \hat{j} + \hat{k}\]
Solution
Let \[\vec{r}\] be the given vector, and let it make an angle \[\alpha, \beta, \gamma\] with OX, OY, OZ respectively.
Then, its direction cosines are \[\cos \alpha , \cos \beta , \cos \gamma\].
So, direction ratio of \[\vec{r}\] \[= 4 \hat{i} + 8 \hat{j} + \hat{k}\] are proportional to 4, 8, 1
Therefore, direction ratio of \[\vec{r}\] are \[\frac{4}{\sqrt{4^2 + 8^2 + 1^2}}, \frac{8}{\sqrt{4^2 + 8^2 + 1^2}} , \frac{1}{\sqrt{4^2 + 8^2 + 1^2}}\] or,
\[\frac{4}{9}, \frac{8}{9}, \frac{1}{9}\]
∴ \[\alpha = \cos^{- 1} \left( \frac{4}{9} \right) , \beta = \cos^{- 1} \left( \frac{8}{9} \right) , \gamma = \cos^{- 1} \left( \frac{1}{9} \right) .\]
APPEARS IN
RELATED QUESTIONS
Can a vector have direction angles 45°, 60°, 120°?
Prove that 1, 1, 1 cannot be direction cosines of a straight line.
A vector \[\vec{r}\] is inclined at equal acute angles to x-axis, y-axis and z-axis.
If |\[\vec{r}\]| = 6 units, find \[\vec{r}\].
A vector \[\vec{r}\] is inclined to -axis at 45° and y-axis at 60°. If \[|\vec{r}|\] = 8 units, find \[\vec{r}\].
Find the direction cosines of the following vectors:
\[2 \hat{i} + 2 \hat{j} - \hat{k}\]
Find the direction cosines of the following vectors:
\[6 \hat{i} - 2 \hat{j} - 3 \hat{k}\]
Find the direction cosines of the following vectors:
\[3 \hat{i} - 4 \hat{k}\]
Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[\hat{i} - \hat{j} + \hat{k}\]
Find the angles at which the following vectors are inclined to each of the coordinate axes:
\[\hat{j} - \hat{k}\]
Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined with the axes OX, OY and OZ.
Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are \[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} .\]
If a unit vector \[\vec{a}\] makes an angle \[\frac{\pi}{3}\] with \[\hat{i} , \frac{\pi}{4}\] with \[\hat{j}\] and an acute angle θ with \[\hat{k}\], then find θ and hence, the components of \[\vec{a}\].
Write the direction cosines of the vector \[\overrightarrow{r} = 6 \hat{i} - 2 \hat{j} + 3 \hat{k} .\]
Write two different vectors having same direction.
Write the direction cosines of the vector \[\hat{i} + 2 \hat{j} + 3 \hat{k}\].
The vector cos α cos β \[\hat{i}\] + cos α sin β \[\hat{j}\] + sin α \[\hat{k}\] is a
Find the acute angle between the planes `vec"r". (hat"i" - 2hat"j" - 2hat"k") = 1` and `vec"r". (3hat"i" - 6hat"j" - 2hat "k") = 0`
The direction co-sines of the line which bisects the angle between positive direction of Y and Z axes are ______.
The cosine of the angle included between the lines r = `(2hat"i" + hat"j" - 2hat"k") + lambda (hat"i" - 2hat"j" - 2hat"k")` and r = `(hat"i" + hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" - 6hat"k")` where λ, μ ∈ R is.
The direction cosines of a line which is perpendicular to lines whose direction ratios are 3, - 2, 4 and 1, 3, - 2 are ______.
Direction cosines of the line `(x + 2)/2 = (2y - 5)/3`, z = -1 are ______
A line lies in the XOZ plane and it makes an angle of 60° with the X-axis. Then its direction cosines are ______
Which of the following can not be the direction cosines of a line?
The direction cosines of a line which is perpendicular to both the lines whose direction ratios are -2, 1, -1 and -3, -4, 1 are ______
The angle between the lines whose direction cosines satisfy the equations l + m + n = 0 and l2 = m2 + n2 is ______.