English

Find the Cube Root of the Following Rational Number 10648 12167 . - Mathematics

Advertisements
Advertisements

Question

Find the cube root of the following rational number \[\frac{10648}{12167}\] .

Sum

Solution

Let us consider the following rational number: \[\frac{10648}{12167}\]

Now

\[\sqrt[3]{\frac{10648}{12167}}\]

\[= \frac{\sqrt[3]{10648}}{\sqrt[3]{12167}}\] ( ∵ \[\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}\] ) 

Cube root by factors:
On factorising 10648 into prime factors, we get:

\[10648 = 2 \times 2 \times 2 \times 11 \times 11 \times 11\]

On grouping the factors in triples of equal factors, we get:

\[10648 = \left\{ 2 \times 2 \times 2 \right\} \times \left\{ 11 \times 11 \times 11 \right\}\]

Now, taking one factor from each triple, we get:

\[\sqrt[3]{10648} = 2 \times 11 = 22\]

Also

On factorising 12167 into prime factors, we get:

\[12167 = 23 \times 23 \times 23\]

On grouping the factors in triples of equal factors, we get:

\[12167 = \left\{ 23 \times 23 \times 23 \right\}\]
Now, taking one factor from the triple, we get:
 
\[\sqrt[3]{12167} = 23\]
Now
\[\sqrt[3]{\frac{10648}{12167}}\]
\[= \frac{\sqrt[3]{10648}}{\sqrt[3]{12167}}\]
\[= \frac{22}{23}\]
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Cubes and Cube Roots - Exercise 4.4 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 4 Cubes and Cube Roots
Exercise 4.4 | Q 5.2 | Page 30

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×