Advertisements
Advertisements
Question
Find the cube root of the following rational number \[\frac{- 19683}{24389}\] .
Solution
Let us consider the following rational number:
\[\frac{- 19683}{24389}\]
Now,
\[\sqrt[3]{\frac{- 19683}{24389}}\]
\[= \frac{\sqrt[3]{- 19683}}{\sqrt[3]{24389}}\] ( ∵ \[\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}\] )
\[= \frac{- \sqrt[3]{19683}}{\sqrt[3]{24389}}\] ( ∵ \[\sqrt[3]{- a} = - \sqrt[3]{a}\] )
Cube root by factors:
On factorising 19683 into prime factors, we get:
\[19683 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3\]
On grouping the factors in triples of equal factors, we get:
\[19683 = \left\{ 3 \times 3 \times 3 \right\} \times \left\{ 3 \times 3 \times 3 \right\} \times \left\{ 3 \times 3 \times 3 \right\}\]
Now, taking one factor from each triple, we get:
\[\sqrt[3]{19683} = 3 \times 3 \times 3 = 27\]
Also
On factorising 24389 into prime factors, we get:
\[24389 = 29 \times 29 \times 29\]
On grouping the factors in triples of equal factors, we get:
\[24389 = \left\{ 29 \times 29 \times 29 \right\}\]
Now, taking one factor from each triple, we get:
\[\sqrt[3]{24389} = 29\]
APPEARS IN
RELATED QUESTIONS
The cube of a two-digit number may have seven or more digits.
Find the volume of a cube, one face of which has an area of 64 m2.
Find which of the following number is cube of rational number \[\frac{27}{64}\] .
Find which of the following number is cube of rational number 0.04 .
Find the cube root of the following rational number \[\frac{686}{- 3456}\] .
Evaluate of the following
\[\sqrt[3]{\frac{0 . 027}{0 . 008}} \div \sqrt[]{\frac{0 . 09}{0 . 04}} - 1\]
Find the cube of: 54
Find the cube of: 0.8
Find the cube of 17.
A number having 7 at its ones place will have 3 at the ones place of its cube.