Advertisements
Advertisements
Question
Find the mean of the following frequency distribution, using the assumed-mean method:
Class | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 | 180 – 200 |
Frequency | 10 | 20 | 30 | 15 | 5 |
Solution
Class | Frequency `(f_i)` | Mid values `(x_i)` | Deviation `(d_i) d_i = (x_i – 150)` |
`(f_i × d_i)` |
100 – 120 | 10 | 110 | -40 | -400 |
120 – 140 | 20 | 130 | -20 | -400 |
140 – 160 | 30 | 150 = A | 0 | 0 |
160 – 180 | 15 | 170 | 20 | 300 |
180 – 200 | 5 | 190 | 40 | 200 |
`Ʃ f_i` = 80 | `Ʃ (f_i × d_i)` = -300 |
Let A = 150 be the assumed mean. Then we have:
Mean, x = ` A + (Ʃ (f_i × d_i))/(Ʃ f_i)`
=150 + `(-300)/80`
`=(1200-30)/8`
=`1170/8 = 146.24`
∴ = x = 146 .24
APPEARS IN
RELATED QUESTIONS
The measurements (in mm) of the diameters of the head of the screws are given below:
Diameter (in mm) | No. of Screws |
33 — 35 | 10 |
36 — 38 | 19 |
39 — 41 | 23 |
42 — 44 | 21 |
45 — 47 | 27 |
Calculate mean diameter of head of a screw by ‘Assumed Mean Method’.
Find the missing value of p for the following distribution whose mean is 12.58
x | 5 | 8 | 10 | 12 | P | 20 | 25 |
f | 2 | 5 | 8 | 22 | 7 | 4 | 2 |
Find the value of p, if the mean of the following distribution is 20.
x | 15 | 17 | 19 | 20+P | 23 |
f | 2 | 3 | 4 | 5P | 6 |
The weekly observations on cost of living index in a certain city for the year 2004 - 2005 are given below. Compute the weekly cost of living index.
Cost of living Index | Number of Students |
1400 - 1500 | 5 |
1500 - 1600 | 10 |
1600 - 1700 | 20 |
1700 - 1800 | 9 |
1800 - 1900 | 6 |
1900 - 2000 | 2 |
The yield of soyabean per acre in the farm of Mukund for 7 years was 10,7,5,3,9,6,9 quintal. Find the mean of yield per acre.
Define mean.
The mean of 1, 3, 4, 5, 7, 4 is m. The numbers 3, 2, 2, 4, 3, 3, p have mean m − 1 and median q. Then, p + q =
Find the mean of the following distribution:
x | 4 | 6 | 9 | 10 | 15 |
f | 5 | 10 | 10 | 7 | 8 |
If the mean of n observation ax1, ax2, ax3,....,axn is a`bar"X"`, show that `(ax_1 - abar"X") + (ax_2 - abar"X") + ...(ax_"n" - abar"X")` = 0.
The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:
Length (in mm) | Number of leaves |
118−126 | 3 |
127–135 | 5 |
136−144 | 9 |
145–153 | 12 |
154–162 | 5 |
163–171 | 4 |
172–180 | 2 |
Find the mean length of the leaves.