Advertisements
Advertisements
Question
The yield of soyabean per acre in the farm of Mukund for 7 years was 10,7,5,3,9,6,9 quintal. Find the mean of yield per acre.
Solution
Mean `= (10+7+5+3+9+6+9)/7 `
`=49/7`
∴ Mean of yield per acre prouce is 7 quintals.
APPEARS IN
RELATED QUESTIONS
The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs.18. Find the missing frequency f.
Daily pocket allowance (in Rs | 11 - 13 | 13 - 15 | 15 - 17 | 17 - 19 | 19 - 21 | 21 - 23 | 23 - 25 |
Number of workers | 7 | 6 | 9 | 13 | f | 5 | 4 |
Find the missing value of p for the following distribution whose mean is 12.58
x | 5 | 8 | 10 | 12 | P | 20 | 25 |
f | 2 | 5 | 8 | 22 | 7 | 4 | 2 |
The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city. Find the average expenditure (in rupees) per household.
Expenditure (in rupees) (x1) |
Frequency(f1) |
100 - 150 | 24 |
150 - 200 | 40 |
200 - 250 | 33 |
250 - 300 | 28 |
300 - 350 | 30 |
350 - 400 | 22 |
400 - 450 | 16 |
450 - 500 | 7 |
The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50. Compute the missing frequency f1 and f2.
Class | 0 - 20 | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 | 100 - 120 |
Frequency | 5 | f1 | 10 | f2 | 7 | 8 |
The following distribution shows the daily pocket allowance given to the children of a multistorey building. The average pocket allowance is Rs 18.00. Find out the missing frequency.
Class interval | 11 - 13 | 13 - 15 | 15 - 17 | 17 - 19 | 19 - 21 | 21 - 23 | 23 - 25 |
Frequency | 7 | 6 | 9 | 13 | - | 5 | 4 |
If the mean of the following frequency distribution is 24, find the value of p.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 3 | 4 | p | 3 | 2 |
The following table gives the literacy rate (in percentage) in 40 cities. Find the mean literacy rate, choosing a suitable method .
Literacy rate(%) |
45 – 55 | 55 – 65 | 65 – 75 | 75 – 85 | 85 – 95 |
Number of cities |
4 | 11 | 12 | 9 | 4 |
The loans sanctioned by a bank for construction of farm ponds are shown in the following table. Find the mean of the loans.
Loan
(Thousand Rupees)
|
40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 |
No. of farm ponds | 13 | 20 | 24 | 36 | 7 |
Write the empirical relation between mean, mode and median.
The mean of n observation is `overlineX` . If the first item is increased by 1, second by 2 and so on, then the new mean is
If the mean of frequency distribution is 8.1 and Σfixi = 132 + 5k, Σfi = 20, then k =?
The mean of n observation is `overlineX`. If the first observation is increased by 1, the second by 2, the third by 3, and so on, then the new mean is
If for certain frequency distribution, Median = 156 and Mode = 180, Find the value of the Mean.
If the mean of the following distribution is 7.5, find the missing frequency ‘f’:
Variable : | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Frequency: | 20 | 17 | f | 10 | 8 | 6 | 7 | 6 |
Find the mean of the following frequency distribution:
Class Interval | Frequency |
0 - 50 | 4 |
50 - 100 | 8 |
100 - 150 | 16 |
150 - 200 | 13 |
200 - 250 | 6 |
250 - 300 | 3 |
The mean weight of 150 students in a certain class is 60 kgs. The mean weight of boys in the class is 70 kg and that of girls is 55 kgs. Find the number of boys and the number of girls in the class.
A car travels from city A to city B, 120 km apart at an average speed of 50km/h. It then makes a return trip at an average speed of 60km/h. It covers another 120km distance at an average speed of 40km/h. The average speed over the entire 360km will be ______.
The mean of the following frequency distribution is 25. Find the value of f.
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 5 | 18 | 15 | f | 6 |
250 apples of a box were weighed and the distribution of masses of the apples is given in the following table:
Mass (in grams) |
80 – 100 | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 |
Number of apples |
20 | 60 | 70 | x | 60 |
Find the value of x and the mean mass of the apples.
The following table gives the duration of movies in minutes:
Duration | 100 – 110 | 110 – 120 | 120 – 130 | 130 – 140 | 140 – 150 | 150 – 160 |
No. of movies | 5 | 10 | 17 | 8 | 6 | 4 |
Using step-deviation method, find the mean duration of the movies.