Advertisements
Advertisements
प्रश्न
The yield of soyabean per acre in the farm of Mukund for 7 years was 10,7,5,3,9,6,9 quintal. Find the mean of yield per acre.
उत्तर
Mean `= (10+7+5+3+9+6+9)/7 `
`=49/7`
∴ Mean of yield per acre prouce is 7 quintals.
APPEARS IN
संबंधित प्रश्न
The measurements (in mm) of the diameters of the head of the screws are given below:
Diameter (in mm) | No. of Screws |
33 — 35 | 10 |
36 — 38 | 19 |
39 — 41 | 23 |
42 — 44 | 21 |
45 — 47 | 27 |
Calculate mean diameter of head of a screw by ‘Assumed Mean Method’.
A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.
Number of plants | 0 - 2 | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 | 12 - 14 |
Number of houses | 1 | 2 | 1 | 5 | 6 | 2 | 3 |
Which method did you use for finding the mean, and why?
In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.
Number of mangoe | 50 − 52 | 53 − 55 | 56 − 58 | 59 − 61 | 62 − 64 |
Number of boxes | 15 | 110 | 135 | 115 | 25 |
Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?
The table below shows the daily expenditure on food of 25 households in a locality.
Daily expenditure (in Rs) | 100 − 150 | 150 − 200 | 200 − 250 | 250 − 300 | 300 − 350 |
Number of households | 4 | 5 | 12 | 2 | 2 |
Find the mean daily expenditure on food by a suitable method.
The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.
Literacy rate (in %) | 45 − 55 | 55 − 65 | 65 − 75 | 75 − 85 | 85 − 95 |
Number of cities | 3 | 10 | 11 | 8 | 3 |
If the mean of the following data is 20.6. Find the value of p.
x | 10 | 15 | P | 25 | 35 |
f | 3 | 10 | 25 | 7 | 5 |
The number of telephone calls received at an exchange per interval for 250 successive one minute intervals are given in the following frequency table:
No. of calls(x) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
No. of intervals (f) | 15 | 24 | 29 | 46 | 54 | 43 | 39 |
Compute the mean number of calls per interval.
The following table gives the number of branches and number of plants in the garden of a school.
No. of branches (x) | 2 | 3 | 4 | 5 | 6 |
No. of plants (f) | 49 | 43 | 57 | 38 | 13 |
Calculate the average number of branches per plant.
Find the mean from the following frequency distribution of marks at a test in statistics:
Marks(x) | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
No. of students (f) | 15 | 50 | 80 | 76 | 72 | 45 | 39 | 9 | 8 | 6 |
Find the mean of each of the following frequency distributions
Class interval | 50 - 70 | 70 - 90 | 90 - 110 | 110 - 130 | 130 - 150 | 150 - 170 |
Frequency | 18 | 12 | 13 | 27 | 8 | 22 |
Find the mean of each of the following frequency distributions
Class interval | 25 - 35 | 35 - 45 | 45 - 55 | 55 - 65 | 65 - 75 |
Frequency | 6 | 10 | 8 | 12 | 4 |
Find the mean of each of the following frequency distributions
Classes | 25 - 29 | 30 - 34 | 35 - 39 | 40 - 44 | 45 - 49 | 50 - 54 | 55 - 59 |
Frequency | 14 | 22 | 16 | 6 | 5 | 3 | 4 |
The following table shows the marks scored by 140 students in an examination of a certain paper:
Marks: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Number of students: | 20 | 24 | 40 | 36 | 20 |
Calculate the average marks by using all the three methods: direct method, assumed mean deviation and shortcut method.
If the mean of the following distribution is 27, find the value of p.
Class | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 8 | p | 12 | 13 | 10 |
If the mean of the following frequency distribution is 24, find the value of p.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 3 | 4 | p | 3 | 2 |
Find the mean of the following frequency distribution is 57.6 and the total number of observation is 50.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 7 | `f_1` | 12 | `f_2` | 8 | 5 |
The Mean of n observation x1, x2,..., xn is `bar"X"`. If (a - b) is added to each of the observation, show that the mean of the new set of observation is `bar"X"` + (a - b).
Mean of n numbers x1, x2, … xn is m. If xn is replaced by x, then new mean is ______.
Calculate the mean of the scores of 20 students in a mathematics test:
Marks | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Number of students |
2 | 4 | 7 | 6 | 1 |
Calculate the mean of the following data:
Class | 4 – 7 | 8 – 11 | 12 – 15 | 16 – 19 |
Frequency | 5 | 4 | 9 | 10 |