Advertisements
Advertisements
Question
The mean of n observation is `overlineX`. If the first observation is increased by 1, the second by 2, the third by 3, and so on, then the new mean is
Options
- `overlineX`\[ + \left( 2n + 1 \right)\]
- `overlineX`\[+ \frac{n + 1}{2}\]
- `overlineX`\[ + \left( n + 1 \right)\]
`overlineX`\[ - \frac{n + 1}{2}\]
Solution
Let \[x_1 , x_2 , x_3 , . . . , x_n\] be the n observations.
Mean = `overlineX`\[= \frac{x_1 + x_2 + . . . + x_n}{n}\]
\[\Rightarrow x_1 + x_2 + x_3 + . . . + x_n = n\]`overlineX`
If the first item is increased by 1, the second by 2, the third by 3 and so on.
Then, the new observations are
\[x_1 + 1, x_2 + 2, x_3 + 3, . . . , x_n + n\].
New mean = \[\frac{\left( x_1 + 1 \right) + \left( x_2 + 2 \right) + \left( x_3 + 3 \right) + . . . + \left( x_n + n \right)}{n}\]
\[= \frac{x_1 + x_2 + x_3 + . . . + x_n + \left( 1 + 2 + 3 + . . . + n \right)}{n}\]
`= (nx +(n(n+1))/2)/n`
`=overlineX`\[ + \frac{n + 1}{2}\]
APPEARS IN
RELATED QUESTIONS
Find the mean of each of the following frequency distributions
Class interval | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 9 | 12 | 15 | 10 | 14 |
Find the mean of the following data, using direct method:
Class | 25-35 | 35-45 | 45-55 | 55-65 | 65-75 |
Frequency | 6 | 10 | 8 | 12 | 4 |
The following table shows the age distribution of patients of malaria in a village during a particular month:
Age (in years) | 5 – 14 | 15 – 24 | 25 – 34 | 35 – 44 | 45 – 54 | 55 - 64 |
No. of cases | 6 | 11 | 21 | 23 | 14 | 5 |
Find the average age of the patients.
If the mean of the following frequency distribution is 18, find the missing frequency.
Class interval | 11 – 13 | 13 – 15 | 15 – 17 | 17 – 19 | 19 – 21 | 21 – 23 | 23 – 25 |
Frequency | 3 | 6 | 9 | 13 | f | 5 | 4 |
If the mean of first n natural numbers is \[\frac{5n}{9}\], then n =
While computing mean of grouped data, we assume that the frequencies are ______.
In calculating the mean of grouped data, grouped in classes of equal width, we may use the formula `barx = a + (sumf_i d_i)/(sumf_i)` where a is the assumed mean. a must be one of the mid-points of the classes. Is the last statement correct? Justify your answer.
Calculate the mean of the scores of 20 students in a mathematics test:
Marks | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Number of students |
2 | 4 | 7 | 6 | 1 |
If the mean of 9, 8, 10, x, 14 is 11, find the value of x.
Find the mean of the following frequency distribution:
Class | 1 – 5 | 5 – 9 | 9 – 13 | 13 – 17 |
Frequency | 4 | 8 | 7 | 6 |