English
Karnataka Board PUCPUC Science Class 11

Find the Moment of Inertia of a Pair of Spheres, Each Having a Mass Mass M and Radius R, Kept in Contact About the Tangent Passing Through the Point of Contact. - Physics

Advertisements
Advertisements

Question

Find the moment of inertia of a pair of spheres, each having a mass mass m and radius r, kept in contact about the tangent passing through the point of contact.

Sum

Solution

It is given that two bodies of mass m and radius r are moving along a common tangent.

Moment of inertia of the first body about XY tangent,

\[I' = I_{com} + m r^2\]

\[\text{So, }I' = \frac{2}{5}m r^2 + m r^2 = \frac{7}{5}m r^2\]

Moment of inertia of the second body about XY tangent,

\[I'' = \frac{2}{5}m r^2 + m r^2 = \frac{7}{5}m r^2\]

Therefore, net moment of inertia,

\[I = I' + I''\]

\[I = \frac{7}{5}m r^2 + \frac{7}{5}m r^2\]

\[= \frac{14}{5}m r^2\text{ units}\]

shaalaa.com
Values of Moments of Inertia for Simple Geometrical Objects (No Derivation)
  Is there an error in this question or solution?
Chapter 10: Rotational Mechanics - Exercise [Page 196]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 10 Rotational Mechanics
Exercise | Q 11 | Page 196

RELATED QUESTIONS

If the ice at the poles melts and flows towards the equator, how will it affect the duration of day-night?


A hollow sphere, a solid sphere, a disc and a ring all having same mass and radius are rolled down on an inclined plane. If no slipping takes place, which one will take the smallest time to cover a given length?


A closed cylindrical tube containing some water (not filling the entire tube) lies in a horizontal plane. If the tube is rotated about a perpendicular bisector, the moment of inertia of water about the axis __________ .


A cubical block of mass M and edge a slides down a rough inclined plane of inclination θ with a uniform velocity. The torque of the normal force on the block about its centre has a magnitude


A thin circular ring of mass M and radius r is rotating about its axis with an angular speed ω. Two particles having mass m each are now attached at diametrically opposite points. The angular speed of the ring will become


A wheel of radius 20 cm is pushed to move it on a rough horizontal surface. If is found to move through a distance of 60 cm on the road during the time it completes one revolution about the centre. Assume that the linear and the angular accelerations are uniform. The frictional force acting on the wheel by the surface is ______________________ .


A solid sphere, a hollow sphere and a disc, all having same mass and radius, are placed at the top of a smooth incline and released. Least time will be taken in reaching the bottom by _________ .


In the previous question, the smallest kinetic energy at
the bottom of the incline will be achieved by ___________ .


A string of negligible thickness is wrapped several times around a cylinder kept on a rough horizontal surface. A man standing at a distance l from the cylinder holds one end of the string and pulls the cylinder towards him (see the following figure). There is no slipping anywhere. The length of the string passed through the hand of the man while the cylinder reaches his hands is _________ .


Three particles, each of mass 200 g, are kept at the corners of an equilateral triangle of side 10 cm. Find the moment of inertial of the system about an axis joining two of the particles.


Particles of masses 1 g, 2 g, 3 g, .........., 100 g are kept at the marks 1 cm, 2 cm, 3 cm, ..........., 100 cm respectively on a metre scale. Find the moment of inertia of the system of particles about a perpendicular bisector of the metre scale.


The moment of inertia of a uniform rod of mass 0⋅50 kg and length 1 m is 0⋅10 kg-m2about a line perpendicular to the rod. Find the distance of this line from the middle point of the rod.


Find the moment of inertia of a uniform square plate of mass m and edge a about one of its diagonals.


The following figure shows two blocks of mass m and M connected by a string passing over a pulley. The horizontal table over which the mass m slides is smooth. The pulley has a radius r and moment of inertia I about its axis and it can freely rotate about this axis. Find the acceleration of the mass M assuming that the string does not slip on the pulley.


A metre stick weighing 240 g is pivoted at its upper end in such a way that it can freely rotate in a vertical place through this end (see the following figure). A particle of mass 100 g is attached to the upper end of the stick through a light string of length 1 m. Initially, the rod is kept vertical and the string horizontal when the system is released from rest. The particle collides with the lower end of the stick and sticks there. Find the maximum angle through which the stick will rise.


A sphere of mass m rolls on a plane surface. Find its kinetic energy at an instant when its centre moves with speed \[\nu.\]


A small spherical ball is released from a point at a height h on a rough track shown in the following figure. Assuming that it does not slip anywhere, find its linear speed when it rolls on the horizontal part of the track.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×