Advertisements
Advertisements
Question
Find the range of frequency of light that is visible to an average human being
\[\left( 400\text{ nm }< \lambda < 700\text{ nm}\right)\]
Solution
Given:-
Range of wave length is \[\left( 400\text{ nm }< \lambda < 700\text{ nm}\right)\]
We know that frequency is given by \[f = \frac{c}{\lambda}\]
APPEARS IN
RELATED QUESTIONS
Define a wavefront.
Is the colour of 620 nm light and 780 nm light same? Is the colour of 620 nm light and 621 nm light same? How many colours are there in white light?
The wavelength of light in a medium is \[\lambda = \lambda_0 /\mu,\] where \[\lambda \] is the wavelength in vacuum. A beam of red light \[\left( \lambda_0 = 720\text{ nm} \right)\] enters water. The wavelength in water is \[\lambda = \lambda_0 /\mu = 540\text{ nm.}\] To a person under water, does this light appear green?
TV signals broadcast by a Delhi studio cannot be directly received at Patna, which is about 1000 km away. But the same signal goes some 36000 km away to a satellite, gets reflected and is then received at Patna. Explain.
The equation of a light wave is written as \[y = A \sin\left( kx - \omega t \right).\] Here, `y` represents _______ .
The inverse square law of intensity \[\left(\text{i.e. the intensity }\infty \frac{1}{r^2}\right)\] is valid for a ____________ .
When light propagates in vacuum, there is an electric field as well as a magnetic field. These fields ____________ .
(a) are constant in time
(b) have zero average value
(c) are perpendicular to the direction of propagation of light.
(d) are mutually perpendicular
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is water everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
The speed of yellow light in a certain liquid is 2.4 × 108 m s−1. Find the refractive index of the liquid.
A glass surface is coated by an oil film of uniform thickness 1.00 × 10−4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Find the wavelengths of light in the visible region (400 nm − 750 nm) which are completely transmitted by the oil film under normal incidence.
Plane microwaves are incident on a long slit of width 5.0 cm. Calculate the wavelength of the microwaves if the first diffraction minimum is formed at θ = 30°.
The optical path of a ray of light of a given wavelength travelling a distance of 3 cm in flint glass having refractive index 1.6 is the same as that on travelling a distance x cm through a medium having a refractive index 1.25. Determine the value of x.
Light follows wave nature because ______
Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______
Which of the following cannot produce two coherent sources?
A Plane Wavefront of light of wavelength 5500 A.U. is incident on two slits in a screen perpendicular to the direction of light rays. If the total separation of 10 bright fringes on a screen 2 m away is 2 cm. Find the distance between the slits.
Light behaves as _________.
Emission and absorption is best described by ______.