English

Find the Square of the Following Number: 451 - Mathematics

Advertisements
Advertisements

Question

Find the square of the following number: 

451

Solution

We will use visual method as it is the most efficient method to solve this problem. 

We have:
451 = 450 + 1
Hence, let us draw a square having side 451 units. Let us split it into 450 units and 1 units. 

Hence, the square of 451 is 203401. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Squares and Square Roots - Exercise 3.3 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 3 Squares and Square Roots
Exercise 3.3 | Q 3.3 | Page 32

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the square of the given number.

46


What will be the units digit of the square of the following number? 

55555


Observe the following pattern
22 − 12 = 2 + 1
32 − 22 = 3 + 2
42 − 32 = 4 + 3 
52 − 42 = 5 + 4
and find the value of 

992 − 962


Observe the following pattern \[1 = \frac{1}{2}\left\{ 1 \times \left( 1 + 1 \right) \right\}\]
\[ 1 + 2 = \frac{1}{2}\left\{ 2 \times \left( 2 + 1 \right) \right\}\]
\[ 1 + 2 + 3 = \frac{1}{2}\left\{ 3 \times \left( 3 + 1 \right) \right\}\]
\[1 + 2 + 3 + 4 = \frac{1}{2}\left\{ 4 \times \left( 4 + 1 \right) \right\}\]and find the values of following:

31 + 32 + ... + 50


Observe the following pattern \[1^2 = \frac{1}{6}\left[ 1 \times \left( 1 + 1 \right) \times \left( 2 \times 1 + 1 \right) \right]\]
\[ 1^2 + 2^2 = \frac{1}{6}\left[ 2 \times \left( 2 + 1 \right) \times \left( 2 \times 2 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 = \frac{1}{6}\left[ 3 \times \left( 3 + 1 \right) \times \left( 2 \times 3 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 + 4^2 = \frac{1}{6}\left[ 4 \times \left( 4 + 1 \right) \times \left( 2 \times 4 + 1 \right) \right]\] and find the values :  

12 + 22 + 32 + 4+ ... + 102

 

 


Observe the following pattern \[1^2 = \frac{1}{6}\left[ 1 \times \left( 1 + 1 \right) \times \left( 2 \times 1 + 1 \right) \right]\]
\[ 1^2 + 2^2 = \frac{1}{6}\left[ 2 \times \left( 2 + 1 \right) \times \left( 2 \times 2 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 = \frac{1}{6}\left[ 3 \times \left( 3 + 1 \right) \times \left( 2 \times 3 + 1 \right) \right]\]
\[ 1^2 + 2^2 + 3^2 + 4^2 = \frac{1}{6}\left[ 4 \times \left( 4 + 1 \right) \times \left( 2 \times 4 + 1 \right) \right]\] and find the values :  

52 + 62 + 72 + 82 + 92 + 102 + 112 + 122

 

 


Find the square of the following number: 

265 


Find the square of the following number: 

512 


For every natural number m, (2m – 1, 2m2 – 2m, 2m2 – 2m + 1) is a pythagorean triplet.


A 5.5 m long ladder is leaned against a wall. The ladder reaches the wall to a height of 4.4 m. Find the distance between the wall and the foot of the ladder.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×