Advertisements
Advertisements
Question
Solution
Common difference of the A.P. (d) = a2 - a1
\[= 15\frac{1}{2} - 18\]
\[ = \frac{31}{2} - 18\]
\[ = \frac{31 - 36}{2}\]
\[ = \frac{- 5}{2}\]
So here,
First term (a) = 18
Last term (l) = \[- 49\frac{1}{2} = \frac{- 99}{2}\]
Common difference (d) = \[\frac{- 5}{2}\]
So, here the first step is to find the total number of terms. Let us take the number of terms as n.
Now, as we know,
`a_n = a+(n-1)d`
So, for the last term,
\[\frac{- 99}{2} = 18 + \left( n - 1 \right)\frac{- 5}{2}\]
\[\frac{- 99}{2} = 18 + \left( \frac{- 5}{2} \right)n + \frac{5}{2}\]
\[\frac{5}{2}n = 18 + \frac{5}{2} + \frac{99}{2}\]
\[\frac{5}{2}n = 18 + \frac{104}{2}\]
\[n = 28\]
Now, using the formula for the sum of n terms, we get
\[S_n = \frac{28}{2}\left[ 2 \times 18 + \left( 28 - 1 \right)\left( \frac{- 5}{2} \right) \right]\]
\[ S_n = 14\left[ 36 + 27\left( \frac{- 5}{2} \right) \right]\]
\[ S_n = - 441\]
Therefore, the sum of the A.P is \[S_n = - 441\]
APPEARS IN
RELATED QUESTIONS
In an AP given a3 = 15, S10 = 125, find d and a10.
Find the sum of the following arithmetic progressions: 50, 46, 42, ... to 10 terms
If the sum of first p terms of an AP is 2 (ap2 + bp), find its common difference.
Divide 207 in three parts, such that all parts are in A.P. and product of two smaller parts will be 4623.
If the sum of first p terms of an A.P. is equal to the sum of first q terms then show that the sum of its first (p + q) terms is zero. (p ≠ q)
The first term of an A. P. is 5 and the common difference is 4. Complete the following activity and find the sum of the first 12 terms of the A. P.
a = 5, d = 4, s12 = ?
`s_n = n/2 [ square ]`
`s_12 = 12/2 [10 +square]`
`= 6 × square `
` =square`
If the first term of an A.P. is 2 and common difference is 4, then the sum of its 40 terms is
How many terms of the series 18 + 15 + 12 + ........ when added together will give 45?
The middle most term(s) of the AP: -11, -7, -3,.... 49 is ______.
Find the sum of 12 terms of an A.P. whose nth term is given by an = 3n + 4.