Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(x^2 cos (pi/4))/sin x`
Solution
Let f(x) = `(x^2 cos(π/4))/sin x`
= `(x^2/sin x) cos π/4 = 1/sqrt2 (x^2/sin x)`
`d/dx (u/v) = (uv - uv)/v^2`
∴ `f'(x) = 1/sqrt2 xx ((d/dx x^2)sin x -x^2 d/dx sin x)/sin^2 x`
= `1/sqrt2 xx (2x sin x - x^2 cos x)/(sin^2 x)`
= `(x(2 sin x - x cos x))/(sqrt2 sin^2 x)` or `(x cos π/4(2 sin x - x cos x))/sin^2 x`
APPEARS IN
RELATED QUESTIONS
Find the derivative of `x^n + ax^(n-1) + a^2 x^(n-2) + ...+ a^(n -1) x + a^n` for some fixed real number a.
Find the derivative of `(x^n - a^n)/(x -a)` for some constant a.
Find the derivative of the following function.
sin x cos x
Find the derivative of the following function:
sec x
Find the derivative of the following function:
2tan x – 7sec x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x2 + 1) cos x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(x + cos x)(x - tan x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`x/(1 + tan x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + sec x) (x – tan x)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`x/(sin^n x)`
Find the derivative of f(x) = ax + b, where a and b are non-zero constants, by first principle
Find the derivative of f(x) = ax2 + bx + c, where a, b and c are none-zero constant, by first principle.
Find the derivative of f(x) = `1/x` by first principle.
Find the derivative of f(x) = sin x, by first principle.
Find the derivative of `cosx/(1 + sinx)`
`(x^4 + x^3 + x^2 + 1)/x`
`(x + 1/x)^3`
`(3x + 4)/(5x^2 - 7x + 9)`
`(x^5 - cosx)/sinx`
`(x^2 cos pi/4)/sinx`
(sin x + cos x)2
x2 sin x + cos 2x
sin3x cos3x
If `y = (1 + 1/x^2)/(1 - 1/x^2)` then `(dy)/(dx)` is ______.
If `y = (sin x + cos x)/(sin x - cos x)`, then `(dy)/(dx)` at x = 0 is ______.
If `y = (sin(x + 9))/cosx` then `(dy)/(dx)` at x = 0 is ______.
If `f(x) = 1 + x + x^2/2 + ... + x^100/100`, then f'(1) is equal to ______.
If `f(x) = x^100 + x^99 .... + x + 1`, then f'(1) is equal to ______.