Advertisements
Advertisements
Question
Find the differential equation of the following:
xy = c2
Solution
Differentiating w.r. to x
`x(("d"y)/("d"x)) + y(1)` = 0
∴ `x(("d"y)/("d"x)) + y` = 0
APPEARS IN
RELATED QUESTIONS
Find the order and degree of the following differential equation:
`("d"y)/("d"x) + 2 = x^3`
Find the order and degree of the following differential equation:
`("d"^3y)/("d"x^3) + 3 (("d"y)/("d"x))^3 + 2 ("d"y)/("d"x)` = 0
Find the order and degree of the following differential equation:
`("d"^2y)/("d"x^2) = sqrt(y - ("d"y)/("d"x))`
Find the order and degree of the following differential equation:
`("d"^3y)/("d"x^3) = 0`
Find the order and degree of the following differential equation:
`("d"^2y)/("d"x^2) + y + (("d"y)/("d"x) - ("d"^3y)/("d"x^3))^(3/2)` = 0
Find the order and degree of the following differential equation:
`(("d"y)/("d"x))^3 + y = x - ("d"x)/("d"y)`
Find the differential equation of the following:
y = c(x – c)2
Find the differential equation of all circles passing through the origin and having their centers on the y axis
Choose the correct alternative:
Th e differential equation `(("d"x)/("d"y))^3 + 2y^(1/2) = x` is
Choose the correct alternative:
The differential equation formed by eliminating A and B from y = e-2x (A cos x + B sin x) is