Advertisements
Advertisements
Question
Find the distance of the point (–1, –5, –10) from the point of intersection of the line `vecr = 2hati - hatj - 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5
Options
10
12
13
14
Solution
13
Explanation:
The line of the plane are
`vecr = 2hati - hatj - 2hatk + lambda(3hati + 4hatj + 2hatk)` ......(i)
And `vecr * (hati - hatj + hatk)` = 5 ......(ii)
Solving the equations (i) and (ii)
`[2hati - hatj - 2hatk + lambda(3hati + 4hatj + 2hatk)] * (hati - hatj + hatk)` = 5
or `(2hati - hatj + 2hatk) * (hati - hatj + hatk) + lambda(23 - 4hatj + 2hatk)`
`(hati - hatj + hatk)` = 5
or `(2 + 1 + 2) + lambda(3 - 4 + 2)` = 5
or `5 + (1)` = 5 ⇒ `lambda` = 0
∴ The other point is `(-1, -5, -10) = hati - 5hatj - 10hatk`
Distance between these points = `sqrt([2 (-1)^2 + (-1 + 5)^2 + [2 - (- 10)]]^2`
= `sqrt(3^2 + 4^2 + 12^2)`
= `sqrt(9 + 16 + 144)`
= 13