Advertisements
Advertisements
Question
Find the equation of the locus of a point such that the sum of the squares of the distance from the points (3, 5), (1, −1) is equal to 20
Solution
Let P(h, k) be the moving point
Let the given point be A(3, 5) and B(1, –1)
We are given PA2 + PB2 = 20
⇒ (h – 3)2 + (k – 5)2 + (h – 1)2 + (k + 1)2 = 20
⇒ h2 – 6h + 9 + k2 – 10k + 25 + h2 – 2h + 1 + k2 + 2k + 1 = 20
(i.e.) 2h2 + 2k2 – 8h – 8k + 36 – 20 = 0
2h2 + 2k2 – 8h – 8k + 16 = 0
(÷ by 2) h2 + k2 – 4h – 4k + 8 = 0
So the locus of P is x2 + y2 – 4x – 4y + 8 = 0
APPEARS IN
RELATED QUESTIONS
Find the locus of P, if for all values of α, the co-ordinates of a moving point P is (9 cos α, 6 sin α)
Find the locus of a point P that moves at a constant distant of two units from the x-axis
Find the locus of a point P that moves at a constant distant of three units from the y-axis
Find the value of k and b, if the points P(−3, 1) and Q(2, b) lie on the locus of x2 − 5x + ky = 0
A straight rod of length 8 units slides with its ends A and B always on the x and y axes respectively. Find the locus of the midpoint of the line segment AB
If O is origin and R is a variable point on y2 = 4x, then find the equation of the locus of the mid-point of segment OR
The coordinates of a moving point P are `("a"/2 ("cosec" theta + sin theta), "b"/2 ("cosec" theta - sin theta))` where θ is a variabe parameter. Show hat the equation of the locus P is b2x2 – a2y2 = a2b2
If R is any point on the x-axis and Q is any point on the y-axis and P is a variable point on RQ with RP = b, PQ = a. then find the equation of locus of P
If the points P(6, 2) and Q(– 2, 1) and R are the vertices of a ∆PQR and R is the point on the locus y = x2 – 3x + 4, then find the equation of the locus of centroid of ∆PQR
The sum of the distance of a moving point from the points (4, 0) and (−4, 0) is always 10 units. Find the equation of the locus of the moving point
Choose the correct alternative:
The equation of the locus of the point whose distance from y-axis is half the distance from origin is
Choose the correct alternative:
Which of the following equation is the locus of (at2, 2at)
Choose the correct alternative:
Which of the following point lie on the locus of 3x2 + 3y2 – 8x – 12y + 17 = 0
Choose the correct alternative:
If the point (8,−5) lies on the locus `x^2/1 - y^2/25` = k, then the value of k is