Advertisements
Advertisements
Question
Find the GCD of the following by division algorithm
2x4 + 13x3 + 27x2 + 23x + 7, x3 + 3x2 + 3x + 1, x2 + 2x + 1
Solution
p(x) = 2x4 + 13x3 + 27x2 + 23x + 7
g(x) = x3 + 3x2 + 3x + 1
r(x) = x2 + 2x + 1
(i) Find the G.C.D. of p(x) and g(x)
∴ G.C.D. = x3 + 3x2 + 3x + 1
(ii) Find the G.C.D. of r(x) and the G.C.D. of p(x) and g(x)
∴ G.C.D. = x2 + 2x + 1
∴ G.C.D. of the three polynomials = x2 + 2x + 1
APPEARS IN
RELATED QUESTIONS
Find the G.C.D. of the given polynomials
3x3 + 3x2 + 3x + 3, 6x3 + 12x2 + 6x + 12
Find the L.C.M. of the given expressions
– 9a3b2, 12a2b2c
Find the L.C.M. of the given expressions
16m, – 12m2n2, 8n2
Find the LCM and GCD for the following and verify that f(x) × g(x) = LCM × GCD
21x2y, 35xy2
Find the LCM and GCD for the following and verify that f(x) × g(x) = LCM × GCD
(x3 – 1) (x + 1), (x3 + 1)
Find the LCM pair of the following polynomials
a2 + 4a – 12, a2 – 5a + 6 whose GCD is a – 2
Find the LCM pair of the following polynomials
x4 – 27a3x, (x – 3a)2 whose GCD is (x – 3a)
Find the GCD pair of the following polynomials
(x3 + y3), (x4 + x2y2 + y4) whose LCM is (x3 + y3) (x2 + xy + y2)
Given the LCM and GCD of the two polynomials p(x) and q(x) find the unknown polynomial in the following table
LCM | GCD | p(x) | q(x) |
a3 – 10a2 + 11a + 70 | a – 7 | a2 – 12a + 35 |
Given the LCM and GCD of the two polynomials p(x) and q(x) find the unknown polynomial in the following table
LCM | GCD | p(x) | q(x) |
(x4 – y4)(x4 + x2y2 + y2) | (x2 – y2) | (x4 – y4)(x2 + y2 – xy) |