Advertisements
Advertisements
Question
Find the L.C.M. of the given expressions
(2x2 – 3xy)2, (4x – 6y)3, (8x3 – 27y3)
Solution
(2x2 – 3xy)2 = x2 (2x – 3y)2
(4x – 6y)3 = 23 (2x – 3y)3
= 8 (2x – 3y)3
(8x3 – 27y3) = (2x)3 – (3y)3
= (2x – 3y) [(2x)2 + 2x × 3y + (3y2)] ...[using a3 – b3 = (a – b) (a2 + ab + b2)]
(2x – 3y) (4x2 + 6xy + 9y2)
L.C.M. = 8x2 (2x – 3y)3 (4x2 + 6xy + 9y)2
APPEARS IN
RELATED QUESTIONS
Find the G.C.D. of the given polynomials
x4 – 1, x3 – 11x2 + x – 11
Find the L.C.M. of the given expressions
4x2y, 8x3y2
Find the L.C.M. of the given expressions
p2 – 3p + 2, p2 – 4
Find the LCM and GCD for the following and verify that f(x) × g(x) = LCM × GCD
21x2y, 35xy2
Find the LCM and GCD for the following and verify that f(x) × g(x) = LCM × GCD
(x2y + xy2), (x2 + xy)
Find the LCM pair of the following polynomials
x4 – 27a3x, (x – 3a)2 whose GCD is (x – 3a)
Find the GCD pair of the following polynomials
(x3 + y3), (x4 + x2y2 + y4) whose LCM is (x3 + y3) (x2 + xy + y2)
Given the LCM and GCD of the two polynomials p(x) and q(x) find the unknown polynomial in the following table
LCM | GCD | p(x) | q(x) |
a3 – 10a2 + 11a + 70 | a – 7 | a2 – 12a + 35 |
Find the least common multiple of xy(k2 + 1) + k(x2 + y2) and xy(k2 – 1) + k(x2 – y2)
Find the GCD of the following by division algorithm
2x4 + 13x3 + 27x2 + 23x + 7, x3 + 3x2 + 3x + 1, x2 + 2x + 1