Advertisements
Advertisements
Question
Find the parametric form of vector equation of the straight line passing through (−1, 2, 1) and parallel to the straight line `vec"r" = (2hat"i" + 3hat"j" - hat"k") + "t"(hat"i" - 2hat"j" + hat"k")` and hence find the shortest distance between the lines
Solution
Given point `vec"a" = -vec"i" + 2vec"j" + vec"k"`
`vec"b" = vec"i" - 2vec"j" + vec"k"`
`vec"r" = vec"a" + "t"vec"b"`
`vec"r" = (-vec"i" + 2vec"j" + vec"k") + "t"(vec"i" - 2vec"j" + vec"k")`
Parallel to the straight line
`vec"r" = (2vec"i" + 3vec"j" - vec"k") + "t"(vec"i" - 2vec"j" + vec"k")`
Here `vec"c" = 2vec"i" + 3vec"j" - vec"k"`
`vec"c" - vec"a" = 3vec"i" + vec"j" - 2vec"k"`
`(vec"c" - vec"a") xx vec"b" = |(hat"i", hat"j", hat"k"),(3, 1, -2),(1, -2, 1)|`
= `-3hat"i" - 5hat"j" - 7hat"k"`
`|(vec"c" - vec"a") xx vec"b"| = sqrt(9 + 25 + 49)`
= `sqrt(83)`
`|vec"b"| = sqrt(1 + 4 + 1)`
= `sqrt(6)`
Shortest distance between parallel lines = `(|(vec"c" - vec"a") xx vec"b"|)/|vec"b"|`
= `sqrt(83)/sqrt(6)` units
APPEARS IN
RELATED QUESTIONS
Find the non-parametric form of vector equation and Cartesian equations of the straight line passing through the point with position vector `4hat"i" + 3hat"j" - 7hat"k"` and parallel to the vector `2hat"i" - 6hat"j" + 7hat"k"`
Find the parametric form of vector equation and Cartesian equations of the straight line passing through the point (– 2, 3, 4) and parallel to the straight line `(x - 1)/(-4) = (y + 3)/5 = (8 - z)/6`
Find the points where the straight line passes through (6, 7, 4) and (8, 4, 9) cuts the xz and yz planes
Find the direction cosines of the straight line passing through the points (5, 6, 7) and (7, 9, 13). Also, find the parametric form of vector equation and Cartesian equations of the straight line passing through two given points
Find the acute angle between the following lines.
`vec"r" = (4hat"i" - hat"j") + "t"(hat"i" + 2hat"j" - 2hat"k")`
Find the acute angle between the following lines.
`(x + 4)/3 = (y - 7)/4 = (z + 5)/5, vec"r" = 4hat"k" + "t"(2hat"i" + hat"j" + hat"k")`
The vertices of ΔABC are A(7, 2, 1), 5(6, 0, 3), and C(4, 2, 4). Find ∠ABC
If the straight lines `(x - 5)/(5"m" + 2) = (2 - y)/5 = (1 - z)/(-1)` and x = `(2y + 1)/(4"m") = (1 - z)/(-3)` are perpendicular to ech other find the value of m
Show that the lines `vec"r" = (6hat"i" + hat"j" + 2hat"k") + "s"(hat"i" + 2hat"j" - 3hat"k")` and `vec"r" = (3hat"i" + 2hat"j" - 2hat"k") + "t"(2hat"i" + 4hat"j" - 5hat"k")` are skew lines and hence find the shortest distance between them
If the two lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4` and `(x - 3)/1 = (y - "m")/2` = z intersect at a point, find the value of m
Show that the lines `(x - 3)/3 = (y - 3)/(-1), z - 1` = 0 and `(x - 6)/2 = (z - 1)/3, y - 2` = 0 intersect. Aslo find the point of intersection
Show that the straight lines x + 1 = 2y = – 12z and x = y + 2 = 6z – 6 are skew and hence find the shortest distance between them
Find the foot of the perpendicular drawn: from the point (5, 4, 2) to the line `(x + 1)/2 = (y - 3)/3 = (z - 1)/(-1)`. Also, find the equation of the perpendicular
Choose the correct alternative:
If `vec"a", vec"b", vec"c"` are non-coplanar, non-zero vectors `[vec"a", vec"b", vec"c"]` = 3, then `{[[vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"]]}^2` is equal to
Choose the correct alternative:
I`vec"a" xx (vec"b" xx vec"c") = (vec"a" xx vec"b") xx vec"c"`, where `vec"a", vec"b", vec"c"` are any three vectors such that `vec"b"*vec"c" ≠ 0` and `vec"a"*vec"b" ≠ 0`, then `vec"a"` and `vec"c"` are
Choose the correct alternative:
The vector equation `vec"r" = (hat"i" - hat"j" - hat"k") + "t"(6hat"i" - hat"k")` represents a straight line passing through the points