Advertisements
Advertisements
Question
Find the sum to n terms: 8 + 88 + 888 + 8888 + …
Solution
Sn = 8 + 88 + 888 + … upto n terms
= 8(1 + 11 + 111 + … upto n terms)
= `8/9` (9 + 99 + 999 + ... upto n terms)
= `8/9` [(10 – 1) + (100 – 1) + (1000 – 1) + ... upto terms)
= `8/9`[(10 + 100 +1000 + ... upto terms) – (1 + 1 + 1 ... n terms)]
But 10, 100, 1000, … n terms are in G.P. with
a = 10, r = `100/10` = 10
∴ Sn = `8/9[10((10^"n" - 1)/(10 - 1)) - "n"]`
= `8/9[10/9(10^"n" - 1) - "n"]`
∴ Sn = `8/81[10(10^"n" - 1) - 9"n"]`.
APPEARS IN
RELATED QUESTIONS
For the following G.P.'s, find Sn: 3, 6, 12, 24, ...
For the following G.P.'s, find Sn: p, q, `"q"^2/"p", "q"^3/"p"^2`, ...
For a G.P., if the sum of the first 3 terms is 125 and the sum of the next 3 terms is 27, find the value of r.
For a G.P., if t3 = 20, t6 = 160, find S7.
For a G.P., if t4 = 16, t9 = 512, find S10.
Find the sum to n terms: 3 + 33 + 333 + 3333 + ...
If S, P, R are the sum, product and sum of the reciprocals of n terms of a G.P. respectively, then verify that `("S"/"R")^"n" = "P"^2`.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If `S_n, S_2n, S_3n` are the sum of `n,2n,3n` terms of a G.P. respectively, then verify that
`S_n(S_(3n) - S_(2n)) = (S_(2n) - S_n)^2. `
If for a sequence, tn = `5^(n-3)/2^(n-3)`, show that the sequence is a G.P.
Find its first term and the common ratio.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P. Find its first term and the common ratio.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n − S2n) = (S2n − Sn)2.
If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P. Find its first term and the common ratio.
If Sn , S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn(S3n − S2n) = (S2n − Sn)2
If for a sequence, `"t"_"n" = (5^"n"-3)/(2^"n"-3)`, show that sequence is a G.P.
Find its first term and the common ratio.
If `S_n, S_(2n), S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If `S_n, S_(2n), S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n(S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.