Advertisements
Advertisements
Question
Find the value(s) of p for which the quadratic equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 has equal roots. Also find these roots.
Solution
The quadratic equation given is (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0
Comparing with ax² + bx + c = 0, we have
a = 2p + 1, b = -(7p + 2), c = (7p - 3)
D = b2 - 4ac
⇒ 0 = [-(7p + 2)]2 -4(2p + 1)(7p - 3)
0 = 49p2 + 4 + 28p - 4(14p2 - 6p + 7p - 3)
0 = 49p2 + 4 + 28p - 56p2 - 4p + 12
0 = -7p2 + 24p + 16
0 = -7p2 + 28p - 4p + 16
0 = -7p(p - 4) -4(p - 4)
0 = (-7p - 4)(p - 4)
⇒ -7p - 4 = 0 or p - 4 = 0
Hence, the value of p = `(-4)/(7)` or p = 4.
APPEARS IN
RELATED QUESTIONS
Find the values of k for which the quadratic equation 9x2 - 3kx + k = 0 has equal roots.
Find the values of k for which the quadratic equation (k + 4) x2 + (k + 1) x + 1 = 0 has equal roots. Also find these roots.
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 + 2(k + 3)x + (k + 8) = 0
Discuss the nature of the roots of the following equation: `5x^2 - 6sqrt(5)x + 9` = 0
Complete the following activity to find the value of discriminant for quadratic equation 4x2 – 5x + 3 = 0.
Activity: 4x2 – 5x + 3 = 0
a = 4 , b = ______ , c = 3
b2 – 4ac = (– 5)2 – (______) × 4 × 3
= ( ______ ) – 48
b2 – 4ac = ______
If α + β = 4 and α3 + β3 = 44, then α, β are the roots of the equation:
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 - 3sqrt(5)x + 10 = 0`
Find the value of 'p' for which the quadratic equation p(x – 4)(x – 2) + (x –1)2 = 0 has real and equal roots.
Solve for x: `5/2 x^2 + 2/5 = 1 - 2x`.
The roots of equation (q – r)x2 + (r – p)x + (p – q) = 0 are equal. Prove that: 2q = p + r, that is, p, q and r are in A.P.