Advertisements
Advertisements
Question
Find the value of x3 + y3 − 12xy + 64, when x + y =−4
Solution
The given expression is
`x^3 +y^3 - 12xy +64`
It is given that
`x+y = -4`
`⇒ x+y+4 = 0`
The given expression can be written in the form
`x^3+y^3 -12xy +64 = x^3 +y^3+ 64 -12xy`
` = (x)^3 + (y)^3 + (4)^3 - 3.(x).(y).(4)`
Recall the formula
`a^3+b^3 +c^3 -3abc = (a+b+c)(a^2+b^2 +c^2 - ab -bc - ca)`
Using the above formula, we have
`x^3 +y^3 -12xy +64`
`= (x+y+4){(x)^2 + (y)^2 + (4)^2 - (x).(y) - (y).(4) -(4).(x)}`
` = (x+y+4)(x^2 +y^2 +16 - xy -4y -4x)`
` = 0.(x^2 +y^2 +16 - xy -4y-4x)`
` = 0`
APPEARS IN
RELATED QUESTIONS
Factorize `x^2 + 5sqrt5x + 30`
Simplify `(173 xx 173 xx 173 xx 127 xx 127 xx 127)/(173 xx 173 xx 173 xx 127 xx 127 xx 127)`
Factorize 8a3 + 27b3 + 36a2b + 54ab2
Factorize x3 -12x ( x - 4) - 64
8x3 -125y3 +180xy + 216
Evaluate: (a2 + b2 + c2 - ab - bc - ca)(a + b + c)
Multiply: (2x - 3y)(2x + 3y)
Multiply: (-2x + 3y)(2x - 3y)
3p2 – 5pq + 2q2 + 6pq – q2 + pq is a
In the formula, area of circle = πr2, the numerical constant of the expression πr2 is ______.