Advertisements
Advertisements
Question
Find the values of k for which the quadratic equation
\[\left( 3k + 1 \right) x^2 + 2\left( k + 1 \right)x + 1 = 0\] has equal roots. Also, find the roots.
Solution
The given quadric equation is \[\left( 3k + 1 \right) x^2 + 2\left( k + 1 \right)x + 1 = 0\] and roots are real and equal.
Then, find the value of k.
Here,
\[a = 3k + 1, b = 2(k + 1) \text { and } c = 1\].
As we know that
\[D = b^2 - 4ac\]
Putting the values of \[a = 3k + 1, b = 2(k + 1) \text { and } c = 1\]
\[D = \left[ 2\left( k + 1 \right) \right]^2 - 4\left( 3k + 1 \right)\left( 1 \right)\]
\[ = 4( k^2 + 2k + 1) - 12k - 4\]
\[ = 4 k^2 + 8k + 4 - 12k - 4\]
\[ = 4 k^2 - 4k\]
The given equation will have real and equal roots, if D = 0
Thus,
\[4 k^2 - 4k = 0\]
\[\Rightarrow 4k(k - 1) = 0\]
\[ \Rightarrow k = 0 \text { or } k - 1 = 0\]
\[ \Rightarrow k = 0 \text { or } k = 1\]
Therefore, the value of k is 0 or 1.
Now, for k = 0, the equation becomes
\[x^2 + 2x + 1 = 0\]
\[ \Rightarrow x^2 + x + x + 1 = 0\]
\[ \Rightarrow x(x + 1) + 1(x + 1) = 0\]
\[ \Rightarrow (x + 1 )^2 = 0\]
\[ \Rightarrow x = - 1, - 1\]
for k = 1, the equation becomes
\[4 x^2 + 4x + 1 = 0\]
\[ \Rightarrow 4 x^2 + 2x + 2x + 1 = 0\]
\[ \Rightarrow 2x(2x + 1) + 1(2x + 1) = 0\]
\[ \Rightarrow (2x + 1 )^2 = 0\]
\[ \Rightarrow x = - \frac{1}{2}, - \frac{1}{2}\]
Hence, the roots of the equation are \[- 1 \text { and } - \frac{1}{2}\].
APPEARS IN
RELATED QUESTIONS
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects
Write the condition to be satisfied for which equations ax2 + 2bx + c = 0 and \[b x^2 - 2\sqrt{ac}x + b = 0\] have equal roots.
If 2 is a root of the equation x2 + bx + 12 = 0 and the equation x2 + bx + q = 0 has equal roots, then q =
If \[\left( a^2 + b^2 \right) x^2 + 2\left( ab + bd \right)x + c^2 + d^2 = 0\] has no real roots, then
Solve the following quadratic equation using formula method only
x2 - 6x + 4 = 0
Solve the equation using the factorisation method:
`(3x -2)/(2x -3) = (3x - 8)/(x + 4)`
Solve the following equation by factorization
x(2x + 5) = 3
Solve the following equation by factorisation :
2x2 + ax – a2= 0
Solve the following equation by factorisation :
`(6)/x - (2)/(x - 1) = (1)/(x - 2)`
In the centre of a rectangular lawn of dimensions 50 m × 40 m, a rectangular pond has to be constructed so that the area of the grass surrounding the pond would be 1184 m2 [see figure]. Find the length and breadth of the pond.