Advertisements
Advertisements
Question
Find x such that 3x+2 = 3x + 216
Solution
Given 3x+2 = 3x + 216, 3x+2 = 3x + 216
Dividing throught by 3x, we get
`(3^(x+2))/(3^x) = (3^x)/(3^x) + (2^3 + 3^3)/(3^x)`
3x+2−x = 3x−x + (23 × 33−x)
32 = 30 + 23 × 33−x
32 − 30 = 23 × 33−x
9 − 1 = 23 × 33−x
8 = 23 × 33−x
`(2^3)/(2^3)` = 33−x
23−3 = 33−x
20 = 33−x
1 = 33−x
30 = 33−x
Equating the powers of same base
0 = 3 − x
x = 3
APPEARS IN
RELATED QUESTIONS
Expand: `(3/5)^4`
Expand: `((-4)/7)^5`
Evaluate: (2−5 × 27) ÷ 2−2
Evaluate: (2−1 × 3−1) ÷ 6−2
Evaluate: `(4/5)^(-2) ÷ (4/5)^(-3)`
Simplify using law of exponents.
25 ÷ 23
Find the value of `((-1)^6 xx (-1)^7 xx (-1)^8)/((-1)^3 xx (-1)^5)`
For any two non-zero rational numbers x and y, x5 ÷ y5 is equal to ______.
The cube `((-1)/4)` is ______.
If `p/q = (3/2)^2 ÷ (9/4)^0`, find the value of `(p/q)^3`.