Advertisements
Advertisements
Question
Following distribution shows the marks of 230 students in a particular subject. If the median marks are 46, then find the values of x and y.
Marks | Number of students |
10 - 20 | 12 |
20 - 30 | 30 |
30 - 40 | x |
40 - 50 | 65 |
50 - 60 | y |
60 - 70 | 25 |
70 - 80 | 18 |
Sum
Solution
Given median = 46
Then, median class = 40 - 50
l = 40, h = 50 - 40 = 10, f = 65, F = 42 + x
Median `=l+((N/2)-F)/fxxh`
`rArr46=40+(115-(42+x))/65xx10`
`rArr46 - 40 = (115-42-x)/65xx10`
`rArr6=(73-x)/65=10`
`rArr(6xx65)/10=73-x`
`rArr390/10=73-x`
39 = 73 − x
x = 73 − 39
x = 34
Given N = 230
⇒ 12 + 30 + x + 65 + y + 25 + 18 = 230
⇒ 12 + 30 + 34 + 65 + y + 25 + 18 = 230
⇒ 184 + y = 230
⇒ y = 230 − 184
⇒ y = 46
shaalaa.com
Is there an error in this question or solution?