Advertisements
Advertisements
Question
For what value of k, the system of equations
x + 2y = 3,
5x + ky + 7 = 0
Have (i) a unique solution, (ii) no solution?
Also, show that there is no value of k for which the given system of equation has infinitely namely solutions
Solution
The given system of equations:
x + 2y = 3
⇒ x + 2y - 3 = 0 ….(i)
And, 5x + ky + 7 = 0 …(ii)
These equations are of the following form:
`a_1x+b_1y+c_1 = 0, a_2x+b_2y+c_2 = 0`
where, `a_1 = 1, b_1= 2, c_1= -3 and a_2 = 5, b_2 = k, c_2 = 7`
(i) For a unique solution, we must have:
∴ `(a_1)/(a_2) ≠ (b_1)/(b_2) i.e., 1/5 ≠ 2/k ⇒ k ≠ 10`
Thus for all real values of k other than 10, the given system of equations will have a unique solution.
(ii) In order that the given system of equations has no solution, we must have:
`(a_1)/(a_2) = (b_1)/(b_2 )≠ (c_1)/(c_2)`
`⇒ 1/5 ≠ 2/k ≠ (−3)/7`
`⇒ 1/5 ≠ 2/k and 2/k ≠ (−3)/7`
`⇒k = 10, k ≠ 14/(−3)`
Hence, the required value of k is 10.
There is no value of k for which the given system of equations has an infinite number of solutions.
APPEARS IN
RELATED QUESTIONS
Draw the graph of
(i) x – 7y = – 42
(ii) x – 3y = 6
(iii) x – y + 1 = 0
(iv) 3x + 2y = 12
Find the values of a and b for which the following system of equations has infinitely many solutions:
3x + 4y = 12
(a + b)x + 2(a - b)y = 5a - 1
Solve for x and y:
217x + 131y = 913, 131x + 217y = 827
A two-digit number is 3 more than 4 times the sum of its digits. If 18 is added to the number, the digits are reversed. Find the number.
The monthly incomes of A and B are in the ratio of 5:4 and their monthly expenditures are in the ratio of 7:5. If each saves Rs. 9000 per month, find the monthly income of each.
The area of a rectangle gets reduced by 67 square meters, when its length is increased by 3m and the breadth is decreased by 4m. If the length is reduced by 1m and breadth is increased by 4m, the area is increased by 89 square meters, Find the dimension of the rectangle.
Find the value of k for which the system of equations 2x + 3y -5 = 0 and 4x + ky – 10 = 0 has infinite number of solutions.
The pair of equations x = a and y = b graphically represents lines which are ______.
Find the value(s) of p in (i) to (iv) and p and q in (v) for the following pair of equations:
3x – y – 5 = 0 and 6x – 2y – p = 0,
if the lines represented by these equations are parallel.
The condition for the system of linear equations ax + by = c; lx + my = n to have a unique solution is ______.