Advertisements
Advertisements
Question
Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm
deg p(x) = deg q(x)
Solution
According to the division algorithm, if p(x) and g(x) are two polynomials with g(x) ≠ 0, then we can find polynomials q(x) and r(x) such that p(x) = g(x) × q(x) + r(x),
where r(x) = 0 or degree of r(x) < degree of g(x)
Degree of a polynomial is the highest power of the variable in the polynomial
deg p(x) = deg q(x)
Degree of quotient will be equal to degree of dividend when divisor is constant ( i.e., when any polynomial is divided by a constant).
Let us assume the division of 6x2 + 2x + 2 by 2.
Here, p(x) = 6x2 + 2x + 2
g(x) = 2
q(x) = 3x2 + x + 1 and r(x) = 0
Degree of p(x) and q(x) is the same i.e., 2.
Checking for division algorithm,
p(x) = g(x) × q(x) + r(x)
6x2 + 2x + 2 = 2(3x2 + x + 1)
= 6x2 + 2x + 2
Thus, the division algorithm is satisfied.
APPEARS IN
RELATED QUESTIONS
Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following
p(x) = x4 – 5x + 6, g(x) = 2 – x2
Obtain all other zeroes of 3x4 + 6x3 – 2x2 – 10x – 5, if two of its zeroes are `sqrt(5/3)` and - `sqrt(5/3)`
Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing f(x) by g(x) in the following f(x) = x3 − 6x2 + 11x − 6, g(x) = x2 + x + 1
Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing f(x) by g(x) in the following f(x) = 4x3 + 8x2 + 8x + 7, g(x) = 2x2 − x + 1
Obtain all zeros of f(x) = x3 + 13x2 + 32x + 20, if one of its zeros is −2.
Find all the zeros of the polynomial 2x3 + x2 − 6x − 3, if two of its zeros are `-sqrt3` and `sqrt3`
Verify division algorithm for the polynomial `f(x)= (8 + 20x + x^2 – 6x^3) by g(x) =( 2 + 5x –3x^2).`
Show that every positive odd integer is of the form (4q +1) or (4q+3), where q is some integer.
Which one of the following statements is correct?
If on division of a polynomial p(x) by a polynomial g(x), the quotient is zero, what is the relation between the degrees of p(x) and g(x)?