Advertisements
Advertisements
Question
How many numbers are there between 99 and 1000 having 7 in the units place?
Solution
First note that all these numbers have three digits.
7 is in the unit’s place.
The middle digit can be any one of the 10 digits from 0 to 9.
The digit in hundred’s place can be any one of the 9 digits from 1 to 9.
Therefore, by the fundamental principle of counting
There are 10 × 9 = 90 numbers between 99 and 1000 having 7 in the unit’s place.
APPEARS IN
RELATED QUESTIONS
How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5 assuming that repetition of the digits is allowed?
How many 4-letter code can be formed using the first 10 letters of the English alphabet, if no letter can be repeated?
A coin is tossed 3 times and the outcomes are recorded. How many possible outcomes are there?
In a test, 5 questions are of the form 'state, true or false'. No student has got all answers correct. Also, the answer of every student is different. Find the number of students appeared for the test.
How many five-digit numbers formed using the digit 0, 1, 2, 3, 4, 5 are divisible by 5 if digits are not repeated?
Answer the following:
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
A person went to a restaurant for dinner. In the menu card, the person saw 10 Indian and 7 Chinese food items. In how many ways the person can select either an Indian or a Chinese food?
A mobile phone has a passcode of 6 distinct digits. What is the maximum number of attempts one makes to retrieve the passcode?
Given four flags of different colours, how many different signals can be generated if each signal requires the use of three flags, one below the other?
Four children are running a race:
In how many ways can the first two places be filled?
How many numbers are there between 100 and 500 with the digits 0, 1, 2, 3, 4, 5? if repetition of digits allowed
How many numbers are there between 100 and 500 with the digits 0, 1, 2, 3, 4, 5? if the repetition of digits is not allowed
How many three-digit odd numbers can be formed by using the digits 0, 1, 2, 3, 4, 5? if the repetition of digits is not allowed
How many three-digit numbers, which are divisible by 5, can be formed using the digits 0, 1, 2, 3, 4, 5 if repetition of digits are allowed?
How many numbers are there between 1 and 1000 (both inclusive) which are divisible neither by 2 nor by 5?
In how many ways 10 pigeons can be placed in 3 different pigeon holes?
Find the value of 6!
Find the value of 3! – 2!
Find the value of `(("n" + 3)!)/(("n" + 1)!)`
Evaluate `("n"!)/("r"!("n" - "r")!)` when for any n with r = 2
Choose the correct alternative:
The sum of the digits at the 10th place of all numbers formed with the help of 2, 4, 5, 7 taken all at a time is
Choose the correct alternative:
In an examination there are three multiple choice questions and each question has 5 choices. Number of ways in which a student can fail to get all answer correct i
Choose the correct alternative:
The number of 5 digit numbers all digits of which are odd i
In an examination there are three multiple choice questions and each question has 4 choices. Number of ways in which a student can fail to get all answer correct is ______.
The number of possible outcomes when a coin is tossed 6 times is ______.
The number of six-digit numbers, all digits of which are odd is ______.
Three letters can be posted in five letterboxes in 35 ways.
In a steamer there are stalls for 12 animals, and there are horses, cows and calves (not less than 12 each) ready to be shipped. They can be loaded in 312 ways.