English

If a = ⎡ ⎢ ⎣ 1 − 1 0 2 3 4 0 1 2 ⎤ ⎥ ⎦ and B = ⎡ ⎢ ⎣ 2 2 − 4 − 4 2 − 4 2 − 1 5 ⎤ ⎥ ⎦ Are Two Square Matrices, Find Ab and Hence Solve the System of Linear Equations: X − - Mathematics

Advertisements
Advertisements

Question

If \[A = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\text{ and }B = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}\] are two square matrices, find AB and hence solve the system of linear equations: x − y = 3, 2x + 3y + 4z = 17, y + 2z = 7

Solution

Here,
\[A = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\text{ and }B = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}\]
Now,
\[AB = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix} \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}\]
\[ \Rightarrow AB = \begin{bmatrix}6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{bmatrix}\]
\[ \Rightarrow AB = 6\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\]
\[ \Rightarrow AB = 6 I_3 \]
\[ \Rightarrow \frac{1}{6}AB = I_3 \]
\[ \Rightarrow \left( \frac{1}{6}B \right)A = I_3 \left( \because AB = BA \right)\]
\[ \Rightarrow A^{- 1} = \frac{1}{6}B\]
\[ \Rightarrow A^{- 1} = \frac{1}{6}\begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}\]
\[X = A^{- 1} B\]
\[X = \frac{1}{6}\begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}\begin{bmatrix}3 \\ 17 \\ 7\end{bmatrix}\]
\[\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{6}\begin{bmatrix}6 + 34 - 28 \\ - 12 + 34 - 28 \\ 6 - 17 + 35\end{bmatrix}\]
\[\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{6}\begin{bmatrix}12 \\ - 6 \\ 24\end{bmatrix}\]
\[ \therefore x = 2, y = - 1\text{ and }z = 4\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 5 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find λ and μ if

`(hati+3hatj+9k)xx(3hati-lambdahatj+muk)=0`


If A is a square matrix of order 3 with determinant 4, then write the value of |−A|.


If A is a square matrix such that |A| = 2, write the value of |A AT|.


If A is a square matrix of order n × n such that  \[|A| = \lambda\] , then write the value of |−A|.


If A and B are square matrices of order 3 such that |A| = − 1, |B| = 3, then find the value of |3 AB|.


If A is a square matrix such that A (adj A)  5I, where I denotes the identity matrix of the same order. Then, find the value of |A|.


If A is a square matrix of order 3 such that |A| = 5, write the value of |adj A|.


If A is a square matrix of order 3 such that |adj A| = 64, find |A|.


If A is a non-singular square matrix such that |A| = 10, find |A−1|.


If A is a non-singular square matrix such that \[A^{- 1} = \begin{bmatrix}5 & 3 \\ - 2 & - 1\end{bmatrix}\] , then find \[\left( A^T \right)^{- 1} .\]


If A is a square matrix of order 3 such that |A| = 3, then write the value of adj (adj A). 


If A is a square matrix of order 3 such that adj (2A) = k adj (A), then write the value of k.


Let A be a 3 × 3 square matrix, such that A (adj A) = 2 I, where I is the identity matrix. Write the value of |adj A|.


If A is a square matrix such that \[A \left( adj A \right) = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\] , then write the value of |adj A|.

 

Let A be a square matrix such that \[A^2 - A + I = O\], then write \[A^{- 1}\]  interms of A.


If A and B are square matrices such that B = − A−1 BA, then (A + B)2 = ________ .


If \[A = \begin{bmatrix}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{bmatrix},\text{ then }A^5 =\] ____________ .


If A is a square matrix such that A2 = I, then A1 is equal to _______ .


A is a square matrix with ∣A∣ = 4. then find the value of ∣A. (adj A)∣.


Let A = `[(1, "a" ("b + c"), "bc"),(1, "b" ("c + a"), "ca"),(1, "c" ("a + b"), "ab")],` then Det. A is ____________.


If A and B are square matrices of order 3, then ____________.


Given that A is a square matrix of order 3 and |A| = −4, then |adj A| is equal to:


Given that A = [aij] is a square matrix of order 3 × 3 and |A| = −7, then the value of `sum_("i" = 1)^3 "a"_("i"2)"A"_("i"2)`, where Aij denotes the cofactor of element aij is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×