English

If a is a Square Matrix of Order 3 with Determinant 4, Then Write the Value of |−A|. - Mathematics

Advertisements
Advertisements

Question

If A is a square matrix of order 3 with determinant 4, then write the value of |−A|.

Solution

|A|=4 
Here, 
 Order of the matrix (n)=3 
Using properties of matrices, we get
|kA|=kn|A|[ For a square matrix of order n and constant k ] 
|A|=(1)3|A|=(1)×4=4 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.6 [Page 91]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.6 | Q 24 | Page 91

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find λ and μ if

(i^+3j^+9k)×(3i^-λj^+μk)=0


If A and B are square matrices of the same order such that |A| = 3 and AB = I, then write the value of |B|.


If A is a square matrix such that |A| = 2, write the value of |A AT|.


If A is a square matrix of order n × n such that  |A|=λ , then write the value of |−A|.


If A and B are square matrices of order 3 such that |A| = − 1, |B| = 3, then find the value of |3 AB|.


If A and B are square matrices of order 2, then det (A + B) = 0 is possible only when





If A is a square matrix of order 3 such that |A| = 5, write the value of |adj A|.


If A is a square matrix of order 3 such that |adj A| = 64, find |A|.


If A is a non-singular square matrix such that |A| = 10, find |A−1|.


If A is a square matrix of order 3 such that |A| = 3, then write the value of adj (adj A). 


If A is a square matrix of order 3 such that adj (2A) = k adj (A), then write the value of k.


Let A be a 3 × 3 square matrix, such that A (adj A) = 2 I, where I is the identity matrix. Write the value of |adj A|.


If A is a square matrix such that A(adjA)=[500050005] , then write the value of |adj A|.

 

Let A be a square matrix such that A2A+I=O, then write A1  interms of A.


If A=[200020002], then A5= ____________ .


If A is a square matrix such that A2 = I, then A1 is equal to _______ .


If A=[110234012] and B=[224424215] are two square matrices, find AB and hence solve the system of linear equations: x − y = 3, 2x + 3y + 4z = 17, y + 2z = 7

Let A = [1a(b + c)bc1b(c + a)ca1c(a + b)ab], then Det. A is ____________.


If A and B are square matrices of order 3, then ____________.


Given that A is a square matrix of order 3 and |A| = −4, then |adj A| is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.