English

A is a Skew-symmetric of Order 3, Write the Value of |A|. - Mathematics

Advertisements
Advertisements

Question

A is a skew-symmetric of order 3, write the value of |A|.

Solution

We know that if a skew symmetric matrix A is of odd order, then \[\left| A \right| = 0\] Since the order of the given matrix is 3, 
\[\left| A \right| = 0\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.6 [Page 91]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.6 | Q 23 | Page 91

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If ` x in N and |[x+3,-2],[-3x,2x]|=8` , then find the value of x.


Evaluate the determinant.

`|(x^2-x+1, x -1),(x+1, x+1)|`


If A = `[(1,2),(4,2)]` then show that |2A| = 4|A|


If A=`[(1,0,1),(0,1,2),(0,0,4)]` then show that `|3A| = 27|A|`


Evaluate the determinant.

`|(3,-1,-2),(0,0,-1),(3,-5,0)|`


Evaluate the determinant.

`|(0,1,2),(-1,0,-3),(-2,3,0)|`


Evaluate the determinant.

`|(2,-1,-2),(0,2,-1),(3,-5,0)|`


If `|(x, 2),(18, x)| = |(6,2),(18,6)|`, then x is equal to ______.


Evaluate `|(cos alpha cos beta, cos alpha sin beta, -sin alpha),(-sin beta, cos beta, 0),(sin alpha cos beta, sin alpha sin beta,cos alpha )|`


If ab and are real numbers, and triangle =`|(b+c, c+a, a+b),(c+a,a+b, b+c),(a+b, b+c, c+a)|` = 0 Show that either a + b + c = 0 or a = b = c.


Solve the equations `|(x+a,x,x),(a,x+a,x),(x,x,x+a)| = 0, a != 0`


Prove that `|(a^2, bc, ac+c^2),(a^2+ab, b^2, ac),(ab, b^2+bc, c^2)| = 4a^2b^2c^2`


In question 18, write the value of a11 C21 + a12 C22 + a13 C23.


If A is a square matrix satisfying AT A = I, write the value of |A|.


If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB = AC⇒ B = C.


One root of the equation `abs ((3"x" - 8, 3,3),(3, 3"x" - 8, 3),(3,3,3"x" - 8)) = 0` is ____________.


If A `= [(2,3),(1,-4)]  "and B" = [(1,-2),(-1,3)],` then find (AB)-1.


If A `= [(2,3),(3,4)],` then find A-1.


Find a 2 x 2 matrix B such that B `= [(1, -2),(1,4)] = [(6,0),(0,6)]`


Let A = `((cos^2x, sin^2x),(sin^2x, cos^2x))` and B = `((sin^2x, cos^2x),(cos^2x, sin^2x))`. Then the determinant of the matrix A + B is


Evaluate `|(x, x + 1),(x - 1, x)|`


Find the value of 'x' for which `|(3, x),(x, 1)| = |(3, 2),(4, 1)|`


If `|(x, 2),(18, x)| = |(6, 2),(18, 6)|`, then 'x' is equal to


There are two number 'x' making the value of the `|(1, -2, 5),(2, x, -1),(0, 4, 2x)|` equals to 86. The sum of there two number, is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×