English

If a is a Square Matrix Satisfying at a = I, Write the Value of |A|. - Mathematics

Advertisements
Advertisements

Question

If A is a square matrix satisfying AT A = I, write the value of |A|.

Solution

\[\text{ Let }A = \left[ a_{i j} \right]\text{ be a square matrix of order n .} \] 
Here, 
\[\left| A \right| = \left| A^T \right| \left[\text{ By property of determinants }\right]\] 
\[\text{Given:} A^T A = I \] 
\[ \Rightarrow \left| A^T A \right| = 1\] 
Then,
\[\left| A^T A \right| = \left| A^T \right| \left| A \right| \left[\text{ Since the determinants are of the same order }\right] \] 
\[ \Rightarrow \left| A^T \right| \left| A \right| = 1\] 
\[ \Rightarrow \left| A \right| = \frac{1}{\left| A^T \right|}\] 
\[ \Rightarrow \left| A \right| = \frac{1}{\left| A \right|} \left[ \therefore \left| A \right| = \left| A^T \right| \right]\] 
\[ \Rightarrow \left| A \right|^2 = 1\]
\[ \Rightarrow \left| A \right| = \pm 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.6 [Page 90]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.6 | Q 21 | Page 90

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If ` x in N and |[x+3,-2],[-3x,2x]|=8` , then find the value of x.


Evaluate the determinant.

`|(cos theta, -sin theta),(sin theta, cos theta)|`


If A = `[(1,2),(4,2)]` then show that |2A| = 4|A|


If A=`[(1,0,1),(0,1,2),(0,0,4)]` then show that `|3A| = 27|A|`


Evaluate the determinant.

`|(3,-1,-2),(0,0,-1),(3,-5,0)|`


Evaluate the determinant.

`|(3,-4,5),(1,1,-2),(2,3,1)|`


Evaluate the determinant.

`|(0,1,2),(-1,0,-3),(-2,3,0)|`


Evaluate the determinant.

`|(2,-1,-2),(0,2,-1),(3,-5,0)|`


Prove that the determinant `|(x,sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1, x)|` is independent of θ.


Evaluate `|(cos alpha cos beta, cos alpha sin beta, -sin alpha),(-sin beta, cos beta, 0),(sin alpha cos beta, sin alpha sin beta,cos alpha )|`


Solve the equations `|(x+a,x,x),(a,x+a,x),(x,x,x+a)| = 0, a != 0`


Prove that `|(a^2, bc, ac+c^2),(a^2+ab, b^2, ac),(ab, b^2+bc, c^2)| = 4a^2b^2c^2`


Choose the correct answer.

If abc, are in A.P., then the determinant

`|(x+2, x+3,x +2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)|`

A. 0

B. 1

C. x

D. 2x


In question 18, write the value of a11 C21 + a12 C22 + a13 C23.


A is a skew-symmetric of order 3, write the value of |A|.


If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB = AC⇒ B = C.


One root of the equation `abs ((3"x" - 8, 3,3),(3, 3"x" - 8, 3),(3,3,3"x" - 8)) = 0` is ____________.


If A `= [(2,3),(3,4)],` then find A-1.


Find a 2 x 2 matrix B such that B `= [(1, -2),(1,4)] = [(6,0),(0,6)]`


Let A = `((cos^2x, sin^2x),(sin^2x, cos^2x))` and B = `((sin^2x, cos^2x),(cos^2x, sin^2x))`. Then the determinant of the matrix A + B is


Evaluate `|(x, x + 1),(x - 1, x)|`


Find the value of 'x' for which `|(3, x),(x, 1)| = |(3, 2),(4, 1)|`


If `|(x, 2),(18, x)| = |(6, 2),(18, 6)|`, then 'x' is equal to


There are two number 'x' making the value of the `|(1, -2, 5),(2, x, -1),(0, 4, 2x)|` equals to 86. The sum of there two number, is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×