Advertisements
Advertisements
Question
If A=`[(1,0,1),(0,1,2),(0,0,4)]` then show that `|3A| = 27|A|`
Solution
`"A" = [(1,0,1),(0,1,2),(0,0,4)]`
`abs(3 "A") = abs ((3,0,3),(0,3,6),(0,0,12))`
L.H.S = |3A| = `|(3,0,3), (0,3,6), (0,0,12)|`
= `3|(3,6),(0,12)| - 0|(0,6), (0,12)| + 3|(0,3),(0,0)|`
= (3 × 36) - 0 + 3(0)
= 108
R.H.S = `27 |A| = 27 |(1,0,1), (0,1,2), (0,0,4)|`
= `27[1|(1,2),(0,4)| -0|(0,2), (0,4)| +1|(0,1),(0,0)|]`
= 27[1(4) - 0 + 0]
= 1082
Hence, |3A| = 27|A|
APPEARS IN
RELATED QUESTIONS
If ` x in N and |[x+3,-2],[-3x,2x]|=8` , then find the value of x.
Evaluate the determinant.
`|(cos theta, -sin theta),(sin theta, cos theta)|`
Evaluate the determinant.
`|(x^2-x+1, x -1),(x+1, x+1)|`
If A = `[(1,2),(4,2)]` then show that |2A| = 4|A|
Evaluate the determinant.
`|(3,-4,5),(1,1,-2),(2,3,1)|`
Evaluate the determinant.
`|(0,1,2),(-1,0,-3),(-2,3,0)|`
Evaluate the determinant.
`|(2,-1,-2),(0,2,-1),(3,-5,0)|`
If `|(x, 2),(18, x)| = |(6,2),(18,6)|`, then x is equal to ______.
Prove that the determinant `|(x,sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1, x)|` is independent of θ.
Evaluate `|(cos alpha cos beta, cos alpha sin beta, -sin alpha),(-sin beta, cos beta, 0),(sin alpha cos beta, sin alpha sin beta,cos alpha )|`
If a, b and c are real numbers, and triangle =`|(b+c, c+a, a+b),(c+a,a+b, b+c),(a+b, b+c, c+a)|` = 0 Show that either a + b + c = 0 or a = b = c.
Solve the equations `|(x+a,x,x),(a,x+a,x),(x,x,x+a)| = 0, a != 0`
Prove that `|(a^2, bc, ac+c^2),(a^2+ab, b^2, ac),(ab, b^2+bc, c^2)| = 4a^2b^2c^2`
Choose the correct answer.
If a, b, c, are in A.P., then the determinant
`|(x+2, x+3,x +2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)|`
A. 0
B. 1
C. x
D. 2x
In question 18, write the value of a11 C21 + a12 C22 + a13 C23.
A is a skew-symmetric of order 3, write the value of |A|.
If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB = AC⇒ B = C.
One root of the equation `abs ((3"x" - 8, 3,3),(3, 3"x" - 8, 3),(3,3,3"x" - 8)) = 0` is ____________.
If A `= [(2,3),(1,-4)] "and B" = [(1,-2),(-1,3)],` then find (AB)-1.
If A `= [(2,3),(3,4)],` then find A-1.
Find a 2 x 2 matrix B such that B `= [(1, -2),(1,4)] = [(6,0),(0,6)]`
Let A = `((cos^2x, sin^2x),(sin^2x, cos^2x))` and B = `((sin^2x, cos^2x),(cos^2x, sin^2x))`. Then the determinant of the matrix A + B is
Evaluate `|(x, x + 1),(x - 1, x)|`