English

Evaluate the determinant. |x2-x+1x-1x+1x+1| - Mathematics

Advertisements
Advertisements

Question

Evaluate the determinant.

`|(x^2-x+1, x -1),(x+1, x+1)|`

Sum

Solution

`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`

`= (x^2 - x + 1) xx (x + 1) - (x + 1) xx (x - 1)`

`= x^3 + x^2 - x^2 - x + x + 1 - (x^2 + x - x - 1)`

`= x^3 - x^2 + 2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.1 [Page 108]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.1 | Q 2.2 | Page 108

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the determinant.

`|(cos theta, -sin theta),(sin theta, cos theta)|`


If A=`[(1,0,1),(0,1,2),(0,0,4)]` then show that `|3A| = 27|A|`


Evaluate the determinant.

`|(3,-1,-2),(0,0,-1),(3,-5,0)|`


Evaluate the determinant.

`|(3,-4,5),(1,1,-2),(2,3,1)|`


Evaluate the determinant.

`|(0,1,2),(-1,0,-3),(-2,3,0)|`


Evaluate the determinant.

`|(2,-1,-2),(0,2,-1),(3,-5,0)|`


Prove that the determinant `|(x,sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1, x)|` is independent of θ.


If ab and are real numbers, and triangle =`|(b+c, c+a, a+b),(c+a,a+b, b+c),(a+b, b+c, c+a)|` = 0 Show that either a + b + c = 0 or a = b = c.


Solve the equations `|(x+a,x,x),(a,x+a,x),(x,x,x+a)| = 0, a != 0`


Prove that `|(a^2, bc, ac+c^2),(a^2+ab, b^2, ac),(ab, b^2+bc, c^2)| = 4a^2b^2c^2`


In question 18, write the value of a11 C21 + a12 C22 + a13 C23.


If A is a square matrix satisfying AT A = I, write the value of |A|.


A is a skew-symmetric of order 3, write the value of |A|.


If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB = AC⇒ B = C.


One root of the equation `abs ((3"x" - 8, 3,3),(3, 3"x" - 8, 3),(3,3,3"x" - 8)) = 0` is ____________.


If A `= [(2,3),(1,-4)]  "and B" = [(1,-2),(-1,3)],` then find (AB)-1.


If A `= [(2,3),(3,4)],` then find A-1.


Find a 2 x 2 matrix B such that B `= [(1, -2),(1,4)] = [(6,0),(0,6)]`


Let A = `((cos^2x, sin^2x),(sin^2x, cos^2x))` and B = `((sin^2x, cos^2x),(cos^2x, sin^2x))`. Then the determinant of the matrix A + B is


Evaluate `|(x, x + 1),(x - 1, x)|`


Find the value of 'x' for which `|(3, x),(x, 1)| = |(3, 2),(4, 1)|`


There are two number 'x' making the value of the `|(1, -2, 5),(2, x, -1),(0, 4, 2x)|` equals to 86. The sum of there two number, is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×