English

Evaluate |cosαcosβcosαsinβ-sinα-sinβcosβ0sinαcosβsinαsinβcosα| - Mathematics

Advertisements
Advertisements

Question

Evaluate `|(cos alpha cos beta, cos alpha sin beta, -sin alpha),(-sin beta, cos beta, 0),(sin alpha cos beta, sin alpha sin beta,cos alpha )|`

Sum

Solution

Δ = `[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]`

Expanding along C3,

`= cos alphacosbeta |(cosbeta, 0), (sinalphasinbeta,cosalpha)| - cosalpha sinbeta |(-sinbeta, 0), (sinalphacosbeta, cosalpha)| - sinalpha|(-sinbeta, cosbeta), (sinalpha cosbeta, sin alpha sin beta)|`

we have:

Δ = `-sinalpha(-sinalphasin^2beta - cos^2betasinalpha) + cosalpha(cosalphacos^2beta + cosalphasin^2beta)`

= `sin^2alpha(sin^2beta + cos^2beta) + cos^2alpha(cos^2beta + sin^2beta)`

= `sin^2alpha(1) + cos^2alpha(1)`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.7 [Page 141]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.7 | Q 3 | Page 141

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the determinant.

`|(cos theta, -sin theta),(sin theta, cos theta)|`


Evaluate the determinant.

`|(x^2-x+1, x -1),(x+1, x+1)|`


If A = `[(1,2),(4,2)]` then show that |2A| = 4|A|


Evaluate the determinant.

`|(3,-1,-2),(0,0,-1),(3,-5,0)|`


Evaluate the determinant.

`|(3,-4,5),(1,1,-2),(2,3,1)|`


Evaluate the determinant.

`|(0,1,2),(-1,0,-3),(-2,3,0)|`


Evaluate the determinant.

`|(2,-1,-2),(0,2,-1),(3,-5,0)|`


If `|(x, 2),(18, x)| = |(6,2),(18,6)|`, then x is equal to ______.


Prove that the determinant `|(x,sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1, x)|` is independent of θ.


Solve the equations `|(x+a,x,x),(a,x+a,x),(x,x,x+a)| = 0, a != 0`


Prove that `|(a^2, bc, ac+c^2),(a^2+ab, b^2, ac),(ab, b^2+bc, c^2)| = 4a^2b^2c^2`


Choose the correct answer.

If abc, are in A.P., then the determinant

`|(x+2, x+3,x +2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)|`

A. 0

B. 1

C. x

D. 2x


If A is a square matrix satisfying AT A = I, write the value of |A|.


A is a skew-symmetric of order 3, write the value of |A|.


If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB = AC⇒ B = C.


If A `= [(2,3),(1,-4)]  "and B" = [(1,-2),(-1,3)],` then find (AB)-1.


If A `= [(2,3),(3,4)],` then find A-1.


Let A = `((cos^2x, sin^2x),(sin^2x, cos^2x))` and B = `((sin^2x, cos^2x),(cos^2x, sin^2x))`. Then the determinant of the matrix A + B is


Evaluate `|(x, x + 1),(x - 1, x)|`


Find the value of 'x' for which `|(3, x),(x, 1)| = |(3, 2),(4, 1)|`


If `|(x, 2),(18, x)| = |(6, 2),(18, 6)|`, then 'x' is equal to


There are two number 'x' making the value of the `|(1, -2, 5),(2, x, -1),(0, 4, 2x)|` equals to 86. The sum of there two number, is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×