Advertisements
Advertisements
Question
Evaluate `|(cos alpha cos beta, cos alpha sin beta, -sin alpha),(-sin beta, cos beta, 0),(sin alpha cos beta, sin alpha sin beta,cos alpha )|`
Solution
Δ = `[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]`
Expanding along C3,
`= cos alphacosbeta |(cosbeta, 0), (sinalphasinbeta,cosalpha)| - cosalpha sinbeta |(-sinbeta, 0), (sinalphacosbeta, cosalpha)| - sinalpha|(-sinbeta, cosbeta), (sinalpha cosbeta, sin alpha sin beta)|`
we have:
Δ = `-sinalpha(-sinalphasin^2beta - cos^2betasinalpha) + cosalpha(cosalphacos^2beta + cosalphasin^2beta)`
= `sin^2alpha(sin^2beta + cos^2beta) + cos^2alpha(cos^2beta + sin^2beta)`
= `sin^2alpha(1) + cos^2alpha(1)`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate the determinant.
`|(cos theta, -sin theta),(sin theta, cos theta)|`
Evaluate the determinant.
`|(x^2-x+1, x -1),(x+1, x+1)|`
If A = `[(1,2),(4,2)]` then show that |2A| = 4|A|
Evaluate the determinant.
`|(3,-1,-2),(0,0,-1),(3,-5,0)|`
Evaluate the determinant.
`|(3,-4,5),(1,1,-2),(2,3,1)|`
Evaluate the determinant.
`|(0,1,2),(-1,0,-3),(-2,3,0)|`
Evaluate the determinant.
`|(2,-1,-2),(0,2,-1),(3,-5,0)|`
If `|(x, 2),(18, x)| = |(6,2),(18,6)|`, then x is equal to ______.
Prove that the determinant `|(x,sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1, x)|` is independent of θ.
Solve the equations `|(x+a,x,x),(a,x+a,x),(x,x,x+a)| = 0, a != 0`
Prove that `|(a^2, bc, ac+c^2),(a^2+ab, b^2, ac),(ab, b^2+bc, c^2)| = 4a^2b^2c^2`
Choose the correct answer.
If a, b, c, are in A.P., then the determinant
`|(x+2, x+3,x +2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)|`
A. 0
B. 1
C. x
D. 2x
If A is a square matrix satisfying AT A = I, write the value of |A|.
A is a skew-symmetric of order 3, write the value of |A|.
If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB = AC⇒ B = C.
If A `= [(2,3),(1,-4)] "and B" = [(1,-2),(-1,3)],` then find (AB)-1.
If A `= [(2,3),(3,4)],` then find A-1.
Let A = `((cos^2x, sin^2x),(sin^2x, cos^2x))` and B = `((sin^2x, cos^2x),(cos^2x, sin^2x))`. Then the determinant of the matrix A + B is
Evaluate `|(x, x + 1),(x - 1, x)|`
Find the value of 'x' for which `|(3, x),(x, 1)| = |(3, 2),(4, 1)|`
If `|(x, 2),(18, x)| = |(6, 2),(18, 6)|`, then 'x' is equal to
There are two number 'x' making the value of the `|(1, -2, 5),(2, x, -1),(0, 4, 2x)|` equals to 86. The sum of there two number, is: