Advertisements
Advertisements
Question
If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .
Solution
Consider AA-1 = I
∴ `[(1,0,0),(2,1,0),(3,3,1)]"A"^-1 = [(1,0,0),(0,1,0),(0,0,1)]`
Apply R2 → R2 - 2R1 , R3 → R3 - 3R1
∴ `[(1,0,0),(0 ,1,0),(0,3,1)]"A"^-1 = [(1,0,0),(-2,1, 0),(-3, 0,1)]`
Apply R3 → R3 - 3R2
∴ `[(1,0,0),(0,1,0),(0,0,1)]"A"^-1 = [(1,0, 0),(-2,1,0),(3,-3,1)]`
∴ IA-1 = `[(1,0,0),(-2,1,0),(3,-3,1)]`
∴ A-1 = `[(1,0,0),(-2,1,0),(3,-3,1)]`
APPEARS IN
RELATED QUESTIONS
State, whether the following statement is true or false. If false, give a reason.
Transpose of a 2 × 1 matrix is a 2 × 1 matrix.
If A = `[(8, -3)]` and B = `[(4, -5)]`; find A + B
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
A2 – B2 = (A + B) (A – B)
If `A = [(2),(5)], B = [(1),(4)]` and `C = [(6),(-2)]`, find A – B + C
Classify the following matrix :
`|(11 , 3 , 0),(21 , 8 , 4),(15,5,2)|`
Find the values of x and y, if `|(3"x" - "y"),(5)| = |(7) , ("x + y")|`
Find the values of a, b, c and d, if `|("a + 3b", 3"c" + "d"),(2"a" - "b" , "c" - 2"d")| = |(5 , 8),(3 , 5)|`
Evaluate the following :
`|(2 , 3),(-4 , 0)| |(3 , -2),(-1 , 4)|`
Evaluate the following :
`|(0 , 1),(-1 , 2),(-2 , 0)| |(0 , -4 , 0),(3 , 0 , -1)|`
Evaluate the following :
`|(6 , 1),(3 , 1),(2 , 4)| |(1 , -2 , 1),(2 , 1 , 3)|`
Solve the equation x + y = 4 and 2x - y = 5 using the method of reduction.
If `"A" = [(1,2,-3),(5,4,0)] , "B" = [(1,4,3),(-2,5,0)]`, then find 2A + 3B.
If A = `[(1,1),(2,2)] , "B" = [(1,2),(3,4)]` then find |AB|.
`[(2, -1),(5, 1)]`
[2 3 – 7]
`[(2 ,- 4),(0 ,0),(1 , 7)]`
If a matrix has 4 elements, what are the possible order it can have?
Construct a matrix A = [aij]3 × 2 whose element aij is given by
aij = i – 3j