Advertisements
Advertisements
Question
Evaluate : `∫_0^3dx/(x + sqrt(9 - x^2))`
Sum
Solution
Let I = `∫_0^3dx/(x + sqrt(9 - x^2))`
Put x = 3sinθ
∴ dx = 3cosθ dθ
When x = 0, θ = 0
x = 3, θ = `pi/2`
∴ I = `∫_0^(pi/2) (3cosθ)/(3sinθ + sqrt(9 - 9sin^2θ))dθ`
∴ I = `∫_0^(pi/2) (3cosθ)/(3sinθ + 3cosθ)`dθ
∴ I = `∫_0^(pi/2) cosθ/(sinθ + cosθ)dθ`
Using `∫_0^a f(x)dx = ∫_0^a f(a - x)dx`
∴ I = `∫_0^(pi/2) cos(pi/2 - θ)/(sin(pi/2 - θ) + cos(pi/2 - θ))dθ`
∴ I = `∫_0^(pi/2) sinθ/(cosθ + sinθ)dθ` .....(ii)
Adding equations (i) and (ii)
2I = `∫_0^(pi/2) (cosθ + sinθ)/(sinθ + cosθ)dθ`
∴ 2I = `∫_0^(pi/2) dθ`
2I = `[θ]_0^(pi/2)`
∴ 2I = `pi/2`
∴ I = `pi/4`
shaalaa.com
Notes
∫
θ
Indefinite Integration - Definition of an Integral
Is there an error in this question or solution?