Advertisements
Advertisements
Question
If A(2, −1), B(a, 4), C(−2, b) and D(−3, −2) are vertices of a parallelogram ABCD taken in order, then find the values of a and b. Also, find the length of the sides of the parallelogram.
Solution
As we know that,
Diagonals of a parallelogram bisect each other.
Therefore, the coordinates of the midpoint of AC are the same as the coordinates of the midpoint of BD, i.e.
By using the midpoint formula
`((x_1 + x_2)/2, (y_1 + y_2)/2)`
`((2 − 2)/2, (−1 + b)/2) = ((a − 3)/2, (4 − 2)/2)`
`(0, (−1 + b)/2) = ((a − 3)/2, 1)`
0 = `(a − 3)/2, (−1 + b)/2` = 1
⇒ 0 = a − 3, −1 + b = 2
⇒ a = 3, b = 3
The vertices of the parallelogram are now:
A(2, −1), B(3, 4), C(−2, 3), D(−3, −2)
Also,
Length of the Sides of the parallelogram
⇒ AB = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
⇒ `sqrt((3 - 2)^2 + (4 - (-1))^2)`
= `sqrt((1)^2 + (5)^2)`
= `sqrt(1 + 25)`
= `sqrt26`
AB = CD ...[Pair of opposite sides of the parallelogram are equal]
⇒ CD = `sqrt26`
⇒ BC = `sqrt((-2 -3)^2 + (3 - 4)^2)`
= `sqrt((-5)^2 + (-1)^2)`
= `sqrt(25 + 1)`
= `sqrt26`
∴ BC = AD
⇒ AD = `sqrt26`
Hence, AB = BC = CD = DA = `sqrt26`