Advertisements
Advertisements
Question
If `hata` is unit vector and `(2vecx - 3hata)*(2vecx + 3hata)` = 91, find the value of `|vecx|`.
Solution
∵ `hata` is a unit vector.
∴ `|hata|` = 1
Given `(2vecx - 3hata)*(2vecx + 3hata)` = 91
`\implies 4vecx*vecx + 6vecx*hata - 6hata*vecx - 9hata*hata` = 91
`\implies 4|vecx|^2 - 9|hata|^2` = 91 ...`[∵ vecx*hata = hata*vecx]`
`\implies 4|vecx|^2 - 9 xx 1` = 91
`4|vecx|^2` = 91 + 9 = 100
`|vecx|^2 = 100/4` = 25
∴ `|vecx| = sqrt(25)` = 5
APPEARS IN
RELATED QUESTIONS
If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are the position vectors of the vertices of an equilateral triangle whose orthocentre is at the origin, then write the value of \[\vec{a} + \vec{b} + \vec{c} .\]
Write the position vector of a point dividing the line segment joining points A and B with position vectors \[\vec{a}\] and \[\vec{b}\] externally in the ratio 1 : 4, where \[\overrightarrow{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \text{ and }\overrightarrow{b} = - \hat{i} + \hat{j} + \hat{k} .\]
Find a unit vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - 3 \hat{j} + 6 \hat{k}\].
In a regular hexagon ABCDEF, A \[\vec{B}\] = a, B \[\vec{C}\] = \[\overrightarrow{b}\text{ and }\overrightarrow{CD} = \vec{c}\].
Then, \[\overrightarrow{AE}\] =
The vector equation of the plane passing through \[\vec{a} , \vec{b} , \vec{c} ,\text{ is }\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} ,\] provided that
Find the components along the coordinate axes of the position vector of the following point :
S(4, –3)
Find the value of λ for which the four points with position vectors `6hat"i" - 7hat"j", 16hat"i" - 19hat"j" - 4hat"k" , lambdahat"j" - 6hat"k" "and" 2hat"i" - 5hat"j" + 10hat"k"` are coplanar.
Find the coordinates of the point which is located in the YZ-plane, one unit to the right of the XZ- plane, and six units above the XY-plane.
Find the area of the traingle with vertices (1, 1, 0), (1, 0, 1) and (0, 1, 1).
Select the correct option from the given alternatives:
Let α, β, γ be distinct real numbers. The points with position vectors `alphahat"i" + betahat"j" + gammahat"k", betahat"i" + gammahat"j" + alphahat"k", gammahat"i" + alphahat"j" + betahat"k"`
Select the correct option from the given alternatives:
If `bar"a" "and" bar"b"` are unit vectors, then what is the angle between `bar"a"` and `bar"b"` for `sqrt3bar"a" - bar"b"` to be a unit vector?
Select the correct option from the given alternatives:
If `bar"a", bar"b", bar"c"` are non-coplanar unit vectors such that `bar"a"xx (bar"b"xxbar"c") = (bar"b"+bar"c")/sqrt2`, then the angle between `bar"a" "and" bar"b"` is
ABCD is a parallelogram. E, F are the midpoints of BC and CD respectively. AE, AF meet the diagonal BD at Q and P respectively. Show that P and Q trisect DB.
State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:
`bar"a" xx(bar"b" xx bar"c")`
Find the unit vector in the direction of the sum of the vectors `vec"a" = 2hat"i" - hat"j" + 2hat"k"` and `vec"b" = -hat"i" + hat"j" + 3hat"k"`.
If `|vec"a"|` = 8, `|vec"b"|` = 3 and `|vec"a" xx vec"b"|` = 12, then value of `vec"a" * vec"b"` is ______.
The formula `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` is valid for non-zero vectors `vec"a"` and `vec"b"`
If `vec"a"` and `vec"b"` are adjacent sides of a rhombus, then `vec"a" * vec"b"` = 0
Classify the following measures as scalar and vector.
40°
In Figure, identify the following vector.
Collinear but not equal
Let `bara, barb` and `barc` be three vectors, then `bara xx (barb xx barc) = (bara xx barb) xx barc` if
If two or more vectors are parallel to the same line, such vectors are known as:
If `veca = hati - hatj + 7hatk` and `vecb = 5hati - hatj + λhatk`, then find the value of λ so that the vectors `veca + vecb` and `veca - vecb` are orthogonal.
In the triangle PQR, `bar("P""Q")`= `2 bar"a"` and `bar ("QR")` = `2 barb`.The mid - point of PR is M. Find following vector in term of `bar a ` and `barb.`
- `bar("P""R")`
- `bar("P""M")`
- `bar("Q""M")`
In the triangle PQR, `bar(PQ) = 2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bar a and bar b `.
- `bar("PR")`
- `bar("PM")`
- `bar("QM")`
Check whether the vectors`2hati+2hatj+3hatk,-3hati+3hatj+2hatk and 3hati +4hatk` form a triangle or not.
Check whether the vectors `2hati + 2 hatj + 3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk` From a triangle or not.
In the triangle PQR, `bar(PQ) = 2bara and bar(QR) = 2barb`. The mid-point of PR is M. Find the following vectors in terms of `bara and barb`.
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`
Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not.