Advertisements
Advertisements
Question
If ad ≠ bc, then prove that the equation (a2 + b2) x2 + 2 (ac + bd) x + (c2 + d2) = 0 has no real roots.
Solution
The given equation is (a2 + b2)x2 + 2 (ac + bd)x + (c2 + d2) = 0
We know, D = b2 − 4ac
Thus,
D=[2(ac + bd)2] −4(a2 + b2)(c2 + d2)
=[4(a2c2 + b2d2 + 2abcd)] −4(a2 + b2)(c2 + d2)
=4[(a2c2 + b2d2 + 2abcd) − (a2c2 + a2d2 + b2c2 + b2d2)]
=4[a2c2 + b2d2 + 2abcd − a2c2 − a2d2 − b2c2 − b2d2]
=4[2abcd − b2c2 − a2d2]
=−4[a2d2 + b2c2 − 2abcd]
=−4[ad − bc]2
But we know that ad ≠ bc
Therefore,
(ad−bc) ≠ 0
⇒(ad − bc)2 > 0
⇒−4(ad − bc)2 <0
⇒D < 0
Hence, the given equation has no real roots.
APPEARS IN
RELATED QUESTIONS
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
2x2 - 3x + 5 = 0
Solve the following quadratic equation using formula method only
5x2 - 19x + 17 = 0
If the ratio of the roots of the equation
lx2 + nx + n = 0 is p: q, Prove that
`sqrt(p/q) + sqrt(q/p) + sqrt(n/l) = 0.`
Find the values of k for which each of the following quadratic equation has equal roots: 9x2 + kx + 1 = 0 Also, find the roots for those values of k in each case.
Which of the following equations has no real roots?
If the difference of the roots of the equation x2 – bx + c = 0 is 1, then:
Values of k for which the quadratic equation 2x2 – kx + k = 0 has equal roots is ______.
Find the roots of the quadratic equation by using the quadratic formula in the following:
2x2 – 3x – 5 = 0
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 + 2sqrt(2)x - 6 = 0`
If the quadratic equation kx2 + kx + 1 = 0 has real and distinct roots, the value of k is ______.