English

If Ad ≠ Bc, Then Prove that the Equation (A2 + B2) X2 + 2 (Ac + Bd) X + (C2 + D2) = 0 Has No Real Roots. - Mathematics

Advertisements
Advertisements

Question

If ad ≠ bc, then prove that the equation (a2 + b2) x2 + 2 (ac + bd) x + (c2 + d2) = 0 has no real roots.

Solution

The given equation is (a2 + b2)x2 + 2 (ac + bd)x + (c2 + d2) = 0

We know, D = b− 4ac

Thus,

D=[2(ac + bd)2] −4(a2 + b2)(c2 + d2)

=[4(a2c2 + b2d2 + 2abcd)] −4(a2 + b2)(c2 + d2)

=4[(a2c2 + b2d2 + 2abcd) − (a2c2 + a2d2 + b2c2 + b2d2)]

=4[a2c2 + b2d2 + 2abcd − a2c2 − a2d2 − b2c2 − b2d2]

=4[2abcd − b2c2 − a2d2]

=−4[a2d2 + b2c2 − 2abcd]

=−4[ad − bc]2

But we know that ad ≠ bc
Therefore,

(ad−bc) ≠ 0

⇒(ad − bc)2 > 0

⇒−4(ad − bc)2 <0

⇒D < 0

Hence, the given equation has no real roots.

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) All India Set 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×