Advertisements
Advertisements
Question
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 + 2sqrt(2)x - 6 = 0`
Solution
The quadratic formula for finding the roots of quadratic equation
ax2 + bx + c = 0, a ≠ 0 is given by,
x = `(-b +- sqrt(b^2 - 4ac))/(2a)`
∴ x = `(-2sqrt(2) +- sqrt((2sqrt(2))^2 - 4(1)(-6)))/(2(1))`
= `(-2sqrt(2) +- sqrt(32))/2`
= `(-2sqrt(2) +- 4sqrt(2))/2`
= `sqrt(2), -3sqrt(2)`
APPEARS IN
RELATED QUESTIONS
Find that non-zero value of k, for which the quadratic equation kx2 + 1 − 2(k − 1)x + x2 = 0 has equal roots. Hence find the roots of the equation.
Find the values of k for which the roots are real and equal in each of the following equation:
5x2 - 4x + 2 + k(4x2 - 2x - 1) = 0
If the roots of the equations ax2 + 2bx + c = 0 and `bx^2-2sqrt(ac)x+b = 0` are simultaneously real, then prove that b2 = ac.
Find the value of the discriminant in the following quadratic equation:
2x2 - 3x + 1 = O
Solve for x : `9^(x + 2) -6.3^(x + 1) + 1 = 0`.
Find the value (s) of k for which each of the following quadratic equation has equal roots : (k – 4) x2 + 2(k – 4) x + 4 = 0
If the roots of px2 + qx + 2 = 0 are reciprocal of each other, then:
If –5 is a root of the quadratic equation 2x2 + px – 15 = 0, then:
State whether the following quadratic equation have two distinct real roots. Justify your answer.
3x2 – 4x + 1 = 0
If 3 is a root of the quadratic equation x2 – px + 3 = 0 then p is equal to ______.