English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If α, β, and γ are the roots of the polynomial equation ax3 + bx2 + cx + d = 0, find the value of γ∑ αβγ in terms of the coefficients - Mathematics

Advertisements
Advertisements

Question

If α, β, and γ are the roots of the polynomial equation ax3 + bx2 + cx + d = 0, find the value of `sum  alpha/(betaγ)` in terms of the coefficients

Sum

Solution

The given equation is ax3 + bx2 + cx + d = 0.

÷ a ⇒ `x^3 + "b"/alpha x^2 + "c"/alphax + "d"/alpha` = 0

Let the roots be α, β, γ

α + β + γ = `- "b"/alpha`

αβ + βγ + γα = `"c/alpha`

αβγ = `- "d"/alpha`

To find:

`sum alpha/(betaγ) = alpha/(betaγ) + beta/(γalpha) + γ/(alpha beta)`

= `(alpha^2 + beta^2 + γ^2)/(alpha beta γ)`

= `((alpha + beta + γ)^2 - 2(alphabeta + betaγ + γalpha))/(alpha beta γ)`

= `((- "b"/a"a")^2 - 2("c"/"a"))/(- "d"/"a")`

= `(("b"^2 - 2"ac"))/"a"^2 xx (- "a")/"d"`

= `(2"ac" - "b"^2)/"ad"`

shaalaa.com
Vieta’s Formulae and Formation of Polynomial Equations
  Is there an error in this question or solution?
Chapter 3: Theory of Equations - Exercise 3.1 [Page 107]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 3 Theory of Equations
Exercise 3.1 | Q 7 | Page 107
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×