English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If the equations x2 + px + q = 0 and x2 + p’x + q’ = 0 have a common root, show that it must be equal to pq'p'qqqpq'-p'qq-q or qq'p'Pq-q'p'-P - Mathematics

Advertisements
Advertisements

Question

If the equations x2 + px + q = 0 and x2 + p’x + q’ = 0 have a common root, show that it must be equal to `("pq'" - "p'q")/("q" - "q")` or `("q" - "q'")/("p'" - "P")`

Sum

Solution

If α is the common root, then.

α2 + pα + q = 0  .......(1)

α2 + p’α + q’ = 0   .......(2)

Subtracting α(p – p’) = q’ – q

α = `("q'" - "q")/("p" - "P'") =("q" - "q'")/("p'" - "P")`  .......(3)

Eliminating α from (1) and (2)

`"p'"alpha^2 + "pp'"alpha + "p'q"                   = 0`
`"p'"alpha^2 +     "pp'" + "pq"                      = 0`
(–)    (–)             (–)                       
   `alpha^2 ("p'" - "p") + "p'q" - "p'q" = 0`

`alpha^2("p'" - "p") = "pq'" - "p'q")`

`alpha^2 = ("pq'" - "p'q")/("p'" - "p")`

`((4))/((3)) => alpha^2/alpha`

= `("pq'" - "p'q")/(("p'" - "p")) xx ("p'" - "p")/("q" - "q'")`

`alpha = ("pq'" - "qp'")/("q" - "q'")`

or

`("q" - "q'")/("p'" - "p")`

shaalaa.com
Vieta’s Formulae and Formation of Polynomial Equations
  Is there an error in this question or solution?
Chapter 3: Theory of Equations - Exercise 3.1 [Page 107]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 3 Theory of Equations
Exercise 3.1 | Q 10 | Page 107
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×