English

If c¯=3a¯-2b¯ then prove that [a¯b¯c¯] = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

If `bar("c") = 3bar("a") - 2bar("b")` then prove that `[(bar("a"), bar("b"), bar("c"))]` = 0

Sum

Solution

`bar("c") = 3bar("a") - 2bar("b")`    .......[Given]

`[(bar("a"), bar("b"), bar("c"))] = bar("a")*(bar("b") xx bar("c"))`

= `bar("a")*[bar("b") xx (3bar("a") - 2bar("b"))]`

= `bar("a")*[bar("b") xx 3bar("a") - bar("b") xx 2bar("b")]`

= `bar("a")*[bar("b") xx 3bar("a") - bar(0)]`    .......`[∵  bar("b") xx bar("b") = bar(0)]`

= `3bar("a")*[bar("b") xx bar("a")]`

= `3[(bar("a"), bar("b"), bar("a"))]`

The scalar triple product `bara * (barb xx bara)` is always zero because `(barb xx bara)` is perpendicular to `bara`, nd the dot product of a vector with a perpendicular vector is zero.

`therefore [bara, barb, barc]`= 3(0)

∴ `[(bar("a"), bar("b"), bar("c"))]` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.5: Vectors and Three Dimensional Geometry - Short Answers I

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 1.5 Vectors and Three Dimensional Geometry
Short Answers I | Q 4

RELATED QUESTIONS

Find the scalar components and magnitude of the vector joining the points `P(x_1, y_1, z_1) and Q (x_2, y_2, z_2).`


Find the area of a parallelogram whose adjacent sides are represented by the vectors\[2 \hat{i} - 3 \hat{k} \text { and } 4 \hat{j} + 2 \hat{k} .\]


Suppose `bar"a" = bar"0"`:

If `bar"a".bar"b" = bar"a".bar"c"`, then is `bar"b" = bar"c"` ?


Suppose `bar"a" = bar"0"`:

If `bar"a" xx bar"b" = bar"a" xx bar"c"`, then is `bar"b" = bar"c"` ?


Suppose `bar"a" = bar"0"`:

If `bar"a".bar"b" = bar"a".bar"c" and bar"a" xx bar"b" = bar"a" xx bar"c"`,  then is `bar"b" = bar"c"`?


A(2, 3), B(−1, 5), C(−1, 1) and D(−7, 5) are four points in the Cartesian plane, Check if, `bar("CD")` is parallel to `bar("AB")`


The non zero vectors `bar("a")` and `bar("b")` are not collinear find the value of `lambda` and `mu`: if `bar("a") + 3bar("b") = 2lambdabar("a") - mubar("b")`


If `bar("a") = 4hat"i" + 3hat"k"` and `bar("b") = -2hat"i" + hat"j" + 5hat"k"`, then find `2bar("a") + 5bar("b")`


If the vectors `2hat"i" - "q"hat"j" + 3hat"k"` and `4hat"i" - 5hat"j" + 6hat"k"` are collinear then find the value of q


Find `bar("a")*(bar("b") xx bar("c"))`, if `bar("a") = 3hat"i" - hat"j" + 4hat"k", bar("b") = 2hat"i" + 3hat"j" - hat"k", bar("c") = -5hat"i" + 2hat"j" + 3hat"k"`


If the vectors `"a"hat"i" + "a"hat"j" + "c"hat"k", hat"i" + hat"k", "c"hat"i" + "c"hat"j" + "b"hat"k"` are coplanar, then c is ______.


The vector having initial and terminal points as (2, 5, 0) and (–3, 7, 4), respectively is ______.


`"Check whether the vectors"  2hati+2hatj+3hatk,-3hati+3hatj+2hatk  "and"  3hati+4hatk  "form a triangle or not".`


If the vectors `2 hat i - 3 hat j + 4 hat k` and `p hat i + 6 hat j - 8 hat k` are collinear, then find the value of p.

In the triangle `PQR, bar (PQ) = 2bara and bar (QR) = 2barb`. The mid-point of PR is M. Find following vectors in terms of `bar a and bar b`.

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×