Advertisements
Advertisements
Question
If `bar("c") = 3bar("a") - 2bar("b")` then prove that `[(bar("a"), bar("b"), bar("c"))]` = 0
Solution
`bar("c") = 3bar("a") - 2bar("b")` .......[Given]
`[(bar("a"), bar("b"), bar("c"))] = bar("a")*(bar("b") xx bar("c"))`
= `bar("a")*[bar("b") xx (3bar("a") - 2bar("b"))]`
= `bar("a")*[bar("b") xx 3bar("a") - bar("b") xx 2bar("b")]`
= `bar("a")*[bar("b") xx 3bar("a") - bar(0)]` .......`[∵ bar("b") xx bar("b") = bar(0)]`
= `3bar("a")*[bar("b") xx bar("a")]`
= `3[(bar("a"), bar("b"), bar("a"))]`
The scalar triple product `bara * (barb xx bara)` is always zero because `(barb xx bara)` is perpendicular to `bara`, nd the dot product of a vector with a perpendicular vector is zero.
`therefore [bara, barb, barc]`= 3(0)
∴ `[(bar("a"), bar("b"), bar("c"))]` = 0
APPEARS IN
RELATED QUESTIONS
Find the scalar components and magnitude of the vector joining the points `P(x_1, y_1, z_1) and Q (x_2, y_2, z_2).`
Find the area of a parallelogram whose adjacent sides are represented by the vectors\[2 \hat{i} - 3 \hat{k} \text { and } 4 \hat{j} + 2 \hat{k} .\]
Suppose `bar"a" = bar"0"`:
If `bar"a".bar"b" = bar"a".bar"c"`, then is `bar"b" = bar"c"` ?
Suppose `bar"a" = bar"0"`:
If `bar"a" xx bar"b" = bar"a" xx bar"c"`, then is `bar"b" = bar"c"` ?
Suppose `bar"a" = bar"0"`:
If `bar"a".bar"b" = bar"a".bar"c" and bar"a" xx bar"b" = bar"a" xx bar"c"`, then is `bar"b" = bar"c"`?
A(2, 3), B(−1, 5), C(−1, 1) and D(−7, 5) are four points in the Cartesian plane, Check if, `bar("CD")` is parallel to `bar("AB")`
The non zero vectors `bar("a")` and `bar("b")` are not collinear find the value of `lambda` and `mu`: if `bar("a") + 3bar("b") = 2lambdabar("a") - mubar("b")`
If `bar("a") = 4hat"i" + 3hat"k"` and `bar("b") = -2hat"i" + hat"j" + 5hat"k"`, then find `2bar("a") + 5bar("b")`
If the vectors `2hat"i" - "q"hat"j" + 3hat"k"` and `4hat"i" - 5hat"j" + 6hat"k"` are collinear then find the value of q
Find `bar("a")*(bar("b") xx bar("c"))`, if `bar("a") = 3hat"i" - hat"j" + 4hat"k", bar("b") = 2hat"i" + 3hat"j" - hat"k", bar("c") = -5hat"i" + 2hat"j" + 3hat"k"`
If the vectors `"a"hat"i" + "a"hat"j" + "c"hat"k", hat"i" + hat"k", "c"hat"i" + "c"hat"j" + "b"hat"k"` are coplanar, then c is ______.
The vector having initial and terminal points as (2, 5, 0) and (–3, 7, 4), respectively is ______.
`"Check whether the vectors" 2hati+2hatj+3hatk,-3hati+3hatj+2hatk "and" 3hati+4hatk "form a triangle or not".`
In the triangle `PQR, bar (PQ) = 2bara and bar (QR) = 2barb`. The mid-point of PR is M. Find following vectors in terms of `bar a and bar b`.
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`