English

If |a¯⋅b¯|=|a¯×b¯| and a¯⋅b¯<0, then find the angle between a¯ and b¯ - Mathematics and Statistics

Advertisements
Advertisements

Question

If `|bar("a")*bar("b")| = |bar("a") xx bar("b")|` and `bar("a")*bar("b") < 0`, then find the angle between `bar("a")` and `bar("b")`

Sum

Solution

We know that,

`bar("a")*bar("b") = |bar("a")| |bar("b")|` cos θ

∴ `|bar("a")*bar("b")| = ||bar("a")| |bar("b")| cosθ|`

∴ `|bar("a")*bar("b")| = |bar("a")| |bar("b")|` cos θ   ......(i) `[bar("a")*bar("b") < 0]`

Also, `|bar("a") xx bar("b")| = |bar("a")| |bar("b")|` sin θ .......(ii)

`|bar("a")*bar("b")| = |bar("a") xx bar("b")|` .......[Given]

∴ `-|bar("a")| |bar("b")| cos theta = |bar("a")| |bar("b")| sin theta`   .......[From (i) and (ii)]

∴ −1 = tan θ

∴ tan θ = −1

∴ θ = `tan^-1(-1) = (3pi^"c")/4`

∴ The angle between `bar("a")` and `bar("b")` is `(3pi^"c")/4`.

shaalaa.com
Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Chapter 1.5: Vectors and Three Dimensional Geometry - Short Answers I

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 1.5 Vectors and Three Dimensional Geometry
Short Answers I | Q 5

RELATED QUESTIONS

Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk`, `barv = hati + 2hatj - 2hatk`.


Find the values of c so that for all real x, the vectors `"xc"hat"i" - 6hat"j" + 3hat"k"` and `"x"hat"i" + 2hat"j" + 2"cx"hat"k"` make an obtuse angle.


Show that the sum of the length of projections of `"p"hat"i" + "q"hat"j" + "r"hat"k"` on the coordinate axes, where p = 2, q = 3 and r = 4 is 9.


If `bar"a" = 2hat"i" + 3hat"j" - hat"k"`, `bar"b" = hat"i" - 4hat"j" + 2hat"k"`, find `(bar"a" + bar"b") xx (bar"a" - bar"b")`


Find a unit vector perpendicular to the vectors `hat"j" + 2hat"k"`  and  `hat"i" + hat"j"`.


If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.


Prove that `2(bar"a" - bar"b") xx 2(bar"a" + bar"b") = 8(bar"a" xx bar"b")`


If `bar"a" = hat"i" - 2hat"j" + 3hat"k"`  , `bar"b" = 4hat"i" - 3hat"j" + hat"k"` , `bar"c" = hat"i" - hat"j" + 2hat"k"` verify that `bar"a"xx(bar"b" + bar"c") = bar"a" xx bar"b" + bar"a" xx bar"c"`


Show that vector area of a parallelogram ABCD is `1/2 (bar"AC" xx bar"BD")` where AC and BD are its diagonals.


If `bar"a", bar"b", bar"c", bar"d"` are four distinct vectors such that `bar"a" xx bar"b" = bar"c" xx bar"d"` and `bar"a" xx bar"c" = bar"b" xx bar"d"` prove that `bar"a" - bar"d"` is parallel to `bar"b" - bar"c"`.


Find `bar"a"` if `bar"a" xx hat"i" + 2bar"a" - 5hat"j" = bar"0"`


Prove, by vector method, that sin (α + β) = sin α . cos β + cos α . sin β


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1


Prove that the two vectors whose direction cosines are given by relations al  + bm + cn = 0 and fmn  + gnl + hlm = 0 are perpendicular, if `"f"/"a" + "g"/"b" + "h"/"c" = 0`


The angle θ between two non-zero vectors `bar("a")` and `bar("b")` is given by cos θ = ______


The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and –1, 1, 2


Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.


If the vectors `ahat("i")+hat("j")+hat("k"),  hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______.


If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"`  = 0 and `bar"r"xx bar"b" = bar"c"  xx bar"b"`, then `bar"r"` = ______.


For non zero, non collinear vectors `vecp` and `vecq`, the value of `[(hati, vecp, vecq)]hati + [(hatj, vecp, vecq)]hatj + [(hatk, vecp, vecq)]hatk` is ______.


Let `veca, vecb` and `vecc` be non-coplanar unit vectors equally inclined to one another at an acute angle θ. Then `[(veca, vecb, vecc)]` in terms of θ is equal to ______.


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk , barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru  "and"  barv`, where `baru =2hati + hatj  - 2hatk,  barv =hati + 2hatj - 2hatk `


Find two unit vectors each of which is perpendicular to both

`baru  "and"  barv, "where"  baru = 2hati + hatj - 2hatk,  barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `\overline "u" and \overline "v",` where ` \overline "u" = 2hati + hatj - 2hatk, \overline "v" = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv, where  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv` where `baru = 2hati +hatj -2hatk, barv = hati +2hatj-2hatk`


If a vector has direction angles 45° and 60° find the third direction angle.


Find the direction ratios of a line perpendicular to both the lines whose direction ratios are 3, –2, 1 and 2, 4, –2


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×