English

Find the values of c so that for all real x, the vectors xcijkxci^-6j^+3k^ and xijcxkxi^+2j^+2cxk^ make an obtuse angle. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the values of c so that for all real x, the vectors `"xc"hat"i" - 6hat"j" + 3hat"k"` and `"x"hat"i" + 2hat"j" + 2"cx"hat"k"` make an obtuse angle.

Sum

Solution

Let `bar"a" = "xc"hat"i" - 6hat"j" + 3hat"k"` and `bar"b" = "x"hat"i" + 2hat"j" + 2"cx"hat"k"`

Consider `bar"a".bar"b" = ("xc"hat"i" - 6hat"j" + 3hat"k").("x"hat"i" + 2hat"j" + 2"cx"hat"k")`

`= ("xc")("x") + (-6)(2) + (3)(2"cx")`

`= "cx"^2 - 12 + 6"cx"`

`= "cx"^2 + 6"cx" - 12`

If the angle between `bar"a"` and `bar"b"`  is obtuse, `bar"a".bar"b" < 0`

∴ cx2 + 6cx - 12 < 0

∴ cx2 + 6cx < 12

∴ c(x2 + 6x) < 12

∴ c < `12/("x"^2 + 6"x")`

∴ c < `12/(("x"^2 + "6x" + 9) - 9) = 12/(("x + 3")^2 - 9)`

∴ c < min `{12/(("x + 3")^2 - 9)}` 

Now, `12/(("x + 3")^2 - 9)` is minimum if (x + 3)2 - 9 is maximum

i.e. (x + 3)2 - 9 = ∞ - 9 = ∞

∴ c < min `{12/∞} = 0`

∴ c < 0.

Hence, the angle between `bar"a"` and `bar"b"` is obtuse if c < 0.

shaalaa.com
Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Chapter 5: Vectors - Exercise 5.3 [Page 169]

RELATED QUESTIONS

Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.


If `hat"p", hat"q"` and `hat"r"` are unit vectors `hat"p"+hat "r" = hat "q"`, find `hat"p".hat"q".`


If `bar"p", bar"q"` and `bar"r"` are unit vectors, find `bar"p".bar"r".`


Find a unit vector perpendicular to the vectors `hat"j" + 2hat"k"`  and  `hat"i" + hat"j"`.


If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.


Find `bar"u".bar"v"` if `|bar"u"| = 2, |bar"v"| = 5, |bar"u" xx bar"v"| = 8`


Find `|bar"u" xx bar"v"|` if `|bar"u"| = 10, |bar"v"| = 2, bar"u".bar"v" = 12`


Find the area of the parallelogram whose adjacent sides are `bar"a" = 2hat"i" - 2hat"j" + hat"k"` and `bar"b" = hat"i" - 3hat"j" - 3hat"k"`


If `bar"a" = hat"i" + hat"j" + hat"k"  "and"  bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c"  "and"  bar"a".bar"b" = 3`


Find `bar"a"` if `bar"a" xx hat"i" + 2bar"a" - 5hat"j" = bar"0"`


If `|bar"a".bar"b"| = |bar"a" xx bar"b"|` and `bar"a".bar"b" < 0`, then find the angle between `bar"a"  "and"  bar"b"`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1


If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.


The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and –1, 1, 2


If the line r = `(hat"i" - 2hat"j" + 3hat"k") + lambda(2hat"i" + hat"j" + 2hat"k")` is parallel to the plane `"r" * (3hat"i" - 2hat"j" + "m"hat"k")` = 10, then the value of m is ______.


The area of triangle ABC in which c = 8 , b = 3, ∠A = 60° is ______ 


Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.


If the vectors `ahat("i")+hat("j")+hat("k"),  hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______.


If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"`  = 0 and `bar"r"xx bar"b" = bar"c"  xx bar"b"`, then `bar"r"` = ______.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk , barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv` where `baru = 2hati +hatj -2hatk, barv = hati +2hatj-2hatk`


If a vector has direction angles 45° and 60° find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×